Abstract
Most of the research on text categorization has focused on mapping text documents to a set of categories among which structural relationships hold, i.e., on hierarchical text categorization. For solutions of a hierarchical problem that make use of an ensemble of classifiers, the behavior of each classifier typically depends on an acceptance threshold, which turns a degree of membership into a dichotomous decision. In principle, the problem of finding the best acceptance thresholds for a set of classifiers related with taxonomic relationships is a hard problem. Hence, devising effective ways for finding suboptimal solutions to this problem may have great importance. In this paper, we assess a greedy threshold selection algorithm aimed at finding a suboptimal combination of thresholds in a hierarchical text categorization setting. Comparative experiments, performed on Reuters, report the performance of the proposed threshold selection algorithm against a relaxed brute-force algorithm and against two state-of-the-art algorithms. Results highlight the effectiveness of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Addis, A., Armano, G., Vargiu, E.: From a generic multiagent architecture to multiagent information retrieval systems. In: AT2AI-6, Sixth International Workshop, From Agent Theory to Agent Implementation, pp. 3–9 (2008)
Addis, A., Armano, G., Vargiu, E.: Assessing progressive filtering to perform hierarchical text categorization in presence of input imbalance. In: Proceedings of International Conference on Knowledge Discovery and Information Retrieval, KDIR 2010 (2010)
Addis, A., Armano, G., Vargiu, E.: Experimental assessment of a threshold selection algorithm for tuning classifiers in the field of hierarchical text categorization. In: Proceedings of 17th RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (2010)
Addis, A., Armano, G., Vargiu, E.: Using the progressive filtering approach to deal with input imbalance in large-scale taxonomies. In: Large-Scale Hierarchical Classification Workshop (2010)
Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE (Wiley Series in Agent Technology). John Wiley and Sons, Chichester (2007)
Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a comprehensive study. Journal of Intelligent Information Systems 28(1), 37–78 (2007)
Cost, W., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)
D’Alessio, S., Murray, K., Schiaffino, R.: The effect of using hierarchical classifiers in text categorization. In: Proceedings of of the 6th International Conference on Recherche dInformation Assiste par Ordinateur (RIAO), pp. 302–313 (2000)
Lewis, D., Yang, Y., Rose, T., Li, F.: RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research 5, 361–397 (2004)
Lewis, D.D.: Evaluating and optimizing autonomous text classification systems. In: SIGIR 1995: Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 246–254. ACM, New York (1995)
Ruiz, M.E.: Combining machine learning and hierarchical structures for text categorization. Ph.D. thesis, supervisor-Srinivasan, Padmini (2001)
Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1(1/2), 69–90 (1999)
Yang, Y.: A study of thresholding strategies for text categorization. In: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 137–145. ACM, New York (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Addis, A., Armano, G., Vargiu, E. (2011). A Comparative Experimental Assessment of a Threshold Selection Algorithm in Hierarchical Text Categorization. In: Clough, P., et al. Advances in Information Retrieval. ECIR 2011. Lecture Notes in Computer Science, vol 6611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20161-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-20161-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20160-8
Online ISBN: 978-3-642-20161-5
eBook Packages: Computer ScienceComputer Science (R0)