Abstract
In this paper we introduce a sub-family of synchronized alternating pushdown automata, one-turn Synchronized Alternating Pushdown Automata, which accept the same class of languages as those generated by Linear Conjunctive Grammars. This equivalence is analogous to the classical equivalence between one-turn PDA and Linear Grammars, thus strengthening the claim of Synchronized Alternating Pushdown Automata as a natural counterpart for Conjunctive Grammars.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aizikowitz, T., Kaminski, M.: Conjunctive grammars and alternating pushdown automata. In: Hodges, W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI), vol. 5110, pp. 44–55. Springer, Heidelberg (2008)
Aizikowitz, T., Kaminski, M.: Linear conjunctive grammars and one-turn synchronized alternating pushdown automata. Technical Report CS-2009-15, Technion – Israel Institute of Technology (2009)
Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)
Culik II, K., Gruska, J., Salomaa, A.: Systolic Trellis automata, I and II. International Journal of Computer Mathematics 15 and 16(1 and 3-4), 195–212 and 3–22 (1984)
Ginsburg, S., Spanier, E.H.: Finite-turn pushdown automata. SIAM Journal on Control 4(3), 429–453 (1966)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)
Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transaction on Computational Logic 2(3), 408–429 (2001)
Kutrib, M., Malcher, A.: Finite turns and the regular closure of linear context-free languages. Discrete Applied Mathematics 155(16), 2152–2164 (2007)
Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack automata. SIAM Journal on Computing 13(1), 135–155 (1984)
Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Combinatorics 6(4), 519–535 (2001)
Okhotin, A.: A recognition and parsing algorithm for arbitrary conjunctive grammars. Theoretical Computer Science 302, 81–124 (2003)
Okhotin, A.: Efficient automaton-based recognition for linear conjunctive languages. International Journal of Foundations of Computer Science 14(6), 1103–1116 (2003)
Okhotin, A.: On the equivalence of linear conjunctive grammars and trellis automata. RAIRO Theoretical Informatics and Applications 38(1), 69–88 (2004)
Okhotin, A.: On the closure properties of linear conjunctive languages. Theoretical Computer Science 299(1-3), 663–685 (2003)
Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27(6), 511–546 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aizikowitz, T., Kaminski, M. (2011). Linear Conjunctive Grammars and One-Turn Synchronized Alternating Pushdown Automata. In: de Groote, P., Egg, M., Kallmeyer, L. (eds) Formal Grammar. FG 2009. Lecture Notes in Computer Science(), vol 5591. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20169-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-20169-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20168-4
Online ISBN: 978-3-642-20169-1
eBook Packages: Computer ScienceComputer Science (R0)