Skip to main content

Using Pattern Recognition to Predict Driver Intent

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6593))

Included in the following conference series:

Abstract

Advanced Driver Assistance Systems (ADAS) should correctly infer the intentions of the driver from what is implied by the incoming data available to it. Gaze behaviour has been found to be an indicator of information gathering, and therefore could be used to derive information about the driver’s next planned objective in order to identify intended manoeuvres without relying solely on car data. Previous work has shown that significantly distinct gaze patterns precede each of the driving manoeuvres analysed indicating that eye movement data might be used as input to ADAS supplementing sensors, such as CAN-Bus, laser, or radar in order to recognise intended driving manoeuvres. Drivers’ gaze behaviour was measured prior to and during the execution of different driving manoeuvres performed in a dynamic driving simulator. The efficacy of Artificial Neural Network models in learning to predict the occurrence of certain driving manoeuvres using both car and gaze data was investigated, which could successfully be demonstrated with real traffic data [1]. Issues considered included the amount of data prior to the manoeuvre to use, the relative difficulty of predicting different manoeuvres, and the accuracy of the models at different pre-manoeuvre times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lethaus, F.: Using eye movements to predict driving manoeuvres. In: Europe Chapter of the Human Factors and Ergonomics Society Annual Conference, Linköping, Sweden (2009)

    Google Scholar 

  2. German Federal Statistical Office: Unfallgeschehen im Straßenverkehr 2006 (Road Traffic Accidents 2006). Federal Statistical Office 2006-PressOffice, Wiesbaden (2007)

    Google Scholar 

  3. Dingus, T.A., Hulse, M.C., Barfield, W.: Human-system interface issues in the design and use of advanced traveller information systems. In: Barfield, W., Dingus, T.A. (eds.) Human Factors in Intelligent Transportation Systems, pp. 359–395. Lawrence Erlbaum Associates, London (1998)

    Google Scholar 

  4. Suzuki, K., Jansson, H.: An analysis of driver’s steering behaviour during auditory or haptic warnings for the designing of lane departure warning system. JSAE Review 24, 65–70 (2003)

    Article  Google Scholar 

  5. Henderson, J.M., Ferreira, F.: Scene perception for psycholinguists. In: Henderson, J.M., Ferreira, F. (eds.) The Interface of Language, Vision, and Action: Eye Movements and the Visual World, pp. 1–58. Psychology Press, New York (2004)

    Google Scholar 

  6. Liu, A.: Towards predicting driver intentions from patterns of eye fixations. In: Gale, A.G., Brown, I.D., Haslegrave, C.M., Taylor, S.P. (eds.) Vision in Vehicles VII, pp. 205–212. Elsevier, Amsterdam (1999)

    Google Scholar 

  7. Vollrath, M., Totzke, I.: Möglichkeiten der Nutzung unterschiedlicher Ressourcen für die Fahrer-Fahrzeug-Interaktion. In: Proceedings of Der Fahrer im 21. Jahrhundert, Braunschweig (2003)

    Google Scholar 

  8. Wickens, C.D.: The structure of attentional resources. In: Nickerson, R. (ed.) Attention and Performance VIII, pp. 239–257. Lawrence Erlbaum Associates, Hillsdale (1980)

    Google Scholar 

  9. Wickens, C.D.: Processing resources in attention. In: Parasuraman, R., Davies, D.R. (eds.) Varieties of Attention, pp. 63–102. Academic Press, San Diego (1984)

    Google Scholar 

  10. Oliver, N., Pentland, A.P.: Graphical models for driver behavior recognition in a SmartCar. In: Proceedings of IEEE Conference on Intelligent Vehicles, Detroit, MI, USA (2000)

    Google Scholar 

  11. Kuge, N., Yamamura, T., Shimoyama, O., Liu, A.: A driver behavior recognition method based on a driver model framework. In: Proceedings of SAE World Congress 2000, Detroit, MI, USA (2000)

    Google Scholar 

  12. Salvucci, D.D., Boer, E.R., Liu, A.: Toward an integrated model of driver behavior in a cognitive architecture. Transportation Research Record 1779, 9–16 (2001)

    Article  Google Scholar 

  13. Salvucci, D.D.: Inferring driver intent: a case study in lane-change detection. In: Proceedings of the HFES 48th Annual Meeting, Santa Monica, CA, USA (2004)

    Google Scholar 

  14. Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum Associates, London (1998)

    Google Scholar 

  15. Lethaus, F., Rataj, J.: Do eye movements reflect driving manoeuvres? IET Intelligent Transport Systems 1(3), 199–204 (2007)

    Article  Google Scholar 

  16. Lethaus, F., Rataj, J.: Using eye movements as a reference to identify driving manoeuvres. In: ATZ | ATZautotechnology (ed.) Proceedings of the FISITA World Automotive Congress 2008, vol. 1. Springer Automotive Media, Wiesbaden (2008)

    Google Scholar 

  17. Mourant, R.R., Donohue, R.J.: Acquisition of indirect vision information by novice, experiences, and mature drivers. Journal of Safety Research 9, 39–46 (1977)

    Google Scholar 

  18. Pastor, G., Tejero, P., Chóliz, M., Roca, J.: Rear-view mirror use, driver alertness and road type: an empirical study using EEG measures. Transportation Research: Part F 9, 286–297 (2006)

    Google Scholar 

  19. Underwood, G., Chapman, P., Brocklehurst, N., Underwood, J., Crundall, D.E.: Visual attention while driving: sequences of eye fixations made by experienced and novice drivers. Ergonomics 46(6), 629–646 (2003)

    Article  Google Scholar 

  20. Recarte, M.A., Nunes, L.M.: Effects of verbal and spatial-imagery tasks on eye fixations while driving. Journal of Experimental Psychology: Applied 6(1), 31–43 (2000)

    Google Scholar 

  21. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  22. Brophy, A.L.: Alternatives to a table of criterion values in signal detection theory. Behavior Research Methods, Instruments, & Computers 18, 285–286 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lethaus, F., Baumann, M.R.K., Köster, F., Lemmer, K. (2011). Using Pattern Recognition to Predict Driver Intent. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20282-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20282-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20281-0

  • Online ISBN: 978-3-642-20282-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics