Skip to main content

Radial Basis Function Kernel Optimization for Pattern Classification

  • Conference paper
Computer Recognition Systems 4

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 95))

Abstract

The main advantage of the kernel methods is the possibility of using linear models in a nonlinear subspace by an implicit transformation of patterns to a high-dimensional feature space without computing their images directly. An appropriately constructed kernel results in a model that fits well to the structure underlying data and doesn’t over-fit to the sample. Recent state-of-the-art kernel evaluation measures are examined in this paper and their application in kernel optimization is verified. Alternative evaluation measures that outperform presented methods are proposed.Optimization leveraging these measures results in parameters corresponding to the classifiers that achieve minimal error rate for RBF kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizerman, A., Braverman, E.M., Rozoner, L.I.: Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning. ARC 25, 821–837 (1964)

    Google Scholar 

  2. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: a library for Support Vector Machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On Kernel-Target Alignment. In: Advances in Neural Information Processing Systems, vol. 14, pp. 367–373. MIT Press, Cambridge (2001)

    Google Scholar 

  6. Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010), http://archive.ics.uci.edu/ml

  7. Kandola, J., Shawe-Taylor, J., Cristianini, N.: On the Extensions of Kernel Alignment. Technical Report NC-TR-02-120, Neural Networks and Computational Learning Theory (2002)

    Google Scholar 

  8. Kandola, J., Shawe-Taylor, J., Cristianini, N.: Optimizing Kernel Alignment over Combinations of Kernels. Technical Report at Department of Computer Science, Royal Holloway, University of London, UK (2002)

    Google Scholar 

  9. Nguyen, C.H., Ho, T.B.: Kernel Matrix Evaluation. In: Veloso, M.M. (ed.) IJCAI, pp. 987–992 (2007)

    Google Scholar 

  10. Pothin, J.B., Richard, C.: Optimal Feature Representation For Kernel Machines Using Kenrel-Target Alignment Criterion. In: Proceedings of International Conference on Acoustics, Speech, and Signal Processing (2007)

    Google Scholar 

  11. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  12. Wang, J., Lu, H., Plataniotis, K.N., Lu, J.: Gaussian Kernel Optimization for Pattern Classification. Pattern Recognition 42(7), 1237–1247 (2009)

    Article  MATH  Google Scholar 

  13. Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Optimizing the Kernel in the Empirical Feature Space. IEEE Transactions on Neural Networks 2(16), 460–474 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chudzian, P. (2011). Radial Basis Function Kernel Optimization for Pattern Classification. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds) Computer Recognition Systems 4. Advances in Intelligent and Soft Computing, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20320-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20320-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20319-0

  • Online ISBN: 978-3-642-20320-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics