Skip to main content

Abstract

The collective intelligence that emerges from the collaboration, competition, and co-ordination among individuals in social networks has opened up new opportunities for knowledge extraction. Valuable knowledge is stored and often “hidden” in massive user contributions, challenging researchers to find methods for leveraging these contributions and unfold this knowledge. In this chapter we investigate the problem of knowledge extraction from social media. We provide background information for knowledge extraction methods that operate on social media, and present three methods that use Flickr data to extract different types of knowledge namely, the community structure of tag-networks, the emerging trends and events in users tag activity, and the associations between image regions and tags in user tagged images. Our evaluation results show that despite the noise existing in massive user contributions, efficient methods can be developed to mine the semantics emerging from these data and facilitate knowledge extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ching-man, Gibbins, N., Yeung, N.S.A.: A study of user profile generation from folksonomies. In: SWKM (2008)

    Google Scholar 

  2. Au Yeung, C.m., Gibbins, N., Shadbolt, N.: Contextualising tags in collaborative tagging systems. In: HT 2009: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, pp. 251–260. ACM, New York (2009)

    Chapter  Google Scholar 

  3. Aurnhammer, M., Hanappe, P., Steels, L.: Augmenting navigation for collaborative tagging with emergent semantics. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 58–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Becker, H., Naaman, M., Gravano, L.: Learning similarity metrics for event identification in social media. In: WSDM 2010, pp. 291–300. ACM, New York (2010)

    Chapter  Google Scholar 

  5. Begelman, G.: Automated tag clustering: Improving search and exploration in the tag space. In: Proc. of the Collaborative Web Tagging Workshop at WWW 2006 (2006)

    Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)

    Article  Google Scholar 

  7. Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: WWW 2006, pp. 625–632. ACM, New York (2006)

    Chapter  Google Scholar 

  8. Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 394–410 (2007)

    Article  Google Scholar 

  9. Cattuto, C.: Collaborative tagging as a complex system. talk given at internationl school on semiotic dynamics. In: Language and Complexity, Erice (2005)

    Google Scholar 

  10. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software, available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  11. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066,111 (2004)

    Article  Google Scholar 

  12. Cooper, M., Foote, J., Girgensohn, A., Wilcox, L.: Temporal event clustering for digital photo collections. ACM Trans. Multimedia Comput. Commun. Appl. 1(3), 269–288 (2005)

    Article  Google Scholar 

  13. Cour, T., Sapp, B., Jordan, C., Taskar, B.: Learning from ambiguously labeled images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2009 (2009)

    Google Scholar 

  14. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of KDD 2001, San Francisco, California, pp. 269–274 (2001)

    Google Scholar 

  15. Diederich, J., Iofciu, T.: Finding communities of practice from user profiles based on folksonomies. In: Proceedings of the 1st International Workshop on Building Technology Enhanced Learning Solutions for Communities of Practice, TEL-CoPs 2006 (2006)

    Google Scholar 

  16. Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. In: Proceedings of WWW 2006, pp. 193–202. ACM, Edinburgh (2006)

    Chapter  Google Scholar 

  17. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database (Language, Speech, and Communication). The MIT Press, Cambridge (1998)

    Google Scholar 

  19. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007), http://www.psi.toronto.edu/affinitypropagation

    Article  MathSciNet  Google Scholar 

  20. Gemmell, J., Shepitsen, A., Mobasher, B., Burke, R.: Personalizing navigation in folksonomies using hierarchical tag clustering. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 196–205. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Ghosh, H., Poornachander, P., Mallik, A., Chaudhury, S.: Learning ontology for personalized video retrieval. In: MS 2007: Workshop on Multimedia Information Retrieval on The Many Faces of Multimedia Semantics, pp. 39–46. ACM, New York (2007)

    Chapter  Google Scholar 

  22. Giannakidou, E., Kompatsiaris, I., Vakali, A.: Semsoc: Semantic, social and content-based clustering in multimedia collaborative tagging systems. In: ICSC, pp. 128–135 (2008)

    Google Scholar 

  23. Giannakidou, E., Koutsonikola, V.A., Vakali, A., Kompatsiaris, Y.: Co-clustering tags and social data sources. In: WAIM, pp. 317–324 (2008)

    Google Scholar 

  24. Giannakidou, E., Koutsonikola, V.A., Vakali, A., Kompatsiaris, Y.: Exploring temporal aspects in user-tag co-clustering. In: Special session: Interactive Multimedia in Social Networks, WIAMIS (2010)

    Google Scholar 

  25. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: Proceedings of WWW 2007, pp. 211–220. ACM, New York (2007)

    Chapter  Google Scholar 

  26. Hotho, A., Ja”schke, R., Schmitz, C., Stumme, G.: Trend detection in folksonomies. In: Avrithis, Y., Kompatsiaris, Y., Staab, S., O’Connor, N.E. (eds.) SAMT 2006. LNCS, vol. 4306, pp. 56–70. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Kennedy, L.S., Chang, S.F., Kozintsev, I.: To search or to label?: predicting the performance of search-based automatic image classifiers. In: Multimedia Information Retrieval, pp. 249–258 (2006)

    Google Scholar 

  28. Kennedy, L.S., Naaman, M., Ahern, S., Nair, R., Rattenbury, T.: How flickr helps us make sense of the world: context and content in community-contributed media collections. ACM Multimedia, 631–640 (2007)

    Google Scholar 

  29. Koutsonikola, V.A., Petridou, S., Vakali, A., Hacid, H., Benatallah, B.: Correlating time-related data sources with co-clustering. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 264–279. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Koutsonikola, V., Vakali, A., Giannakidou, E., Kompatsiaris, I.: Clustering of social tagging system users: A topic and time based approach. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009. LNCS, vol. 5802, pp. 75–86. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Li, F.F., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    Article  Google Scholar 

  32. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 985–1002 (2008), http://dx.doi.org/10.1109/TPAMI.2007.70847

    Article  Google Scholar 

  33. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  34. Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr, academic article, to read. In: Hypertext, pp. 31–40 (2006)

    Google Scholar 

  35. Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: Still image segmentation tools for object-based multimedia applications. IJPRAI 18(4), 701–725 (2004)

    Google Scholar 

  36. Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semant 5(1), 5–15 (2007), http://dx.doi.org/10.1016/j.websem.2006.11.002

    Article  MathSciNet  Google Scholar 

  37. Nanopoulos, A., Gabriel, H.H., Spiliopoulou, M.: Spectral clustering in social-tagging systems. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009. LNCS, vol. 5802, pp. 87–100. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  38. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026,113 (2004)

    Article  Google Scholar 

  39. Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: A graph-based clustering scheme for identifying related tags in folksonomies. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 65–76. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  40. Papadopoulos, S., Vakali, A., Kompatsiaris, Y.: Community detection in collaborative tagging systems. In: Pardede, E. (ed.) Community-Built Database: Research and Development. Springer, Heidelberg (2010)

    Google Scholar 

  41. Quack, T., Leibe, B., Gool, L.J.V.: World-scale mining of objects and events from community photo collections. In: CIVR, pp. 47–56 (2008)

    Google Scholar 

  42. Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from flickr tags. In: SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 103–110. ACM, New York (2007)

    Chapter  Google Scholar 

  43. Russell, T.: Cloudalicious: Folksonomy over time. In: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 364–364. ACM, Chapel Hill, NC, USA (2006)

    Chapter  Google Scholar 

  44. van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 99(1) (5555)

    Google Scholar 

  45. Schifanella, R., Barrat, A., Cattuto, C., Markines, B., Menczer, F.: Folks in folksonomies: social link prediction from shared metadata. In: WSDM 2010: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 271–280. ACM, New York (2010)

    Chapter  Google Scholar 

  46. Scholkopf, B., Smola, A., Williamson, R., Bartlett, P.: New support vector algorithms. Neural Networks 22, 1083–1121 (2000)

    Google Scholar 

  47. Segaran, T.: Programming Collective Intelligence. O’Reilly Media Inc., Sebastopol (2007)

    Google Scholar 

  48. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: textonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  49. Simpson, E.: Clustering tags in enterprise and web folksonomies. HP Labs Techincal Reports (2008), http://www.hpl.hp.com/techreports/2008/HPL-2008-18.html

  50. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV 2003: Proceedings of the Ninth IEEE International Conference on Computer Vision, p. 1470. IEEE Computer Society, Washington, DC, USA (2003)

    Chapter  Google Scholar 

  51. Specia, L., Motta, E.: Integrating folksonomies with the semantic web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  52. Sun, A., Zeng, D., Li, H., Zheng, X.: Discovering trends in collaborative tagging systems. In: Yang, C.C., Chen, H., Chau, M., Chang, K., Lang, S.-D., Chen, P.S., Hsieh, R., Zeng, D., Wang, F.-Y., Carley, K.M., Mao, W., Zhan, J. (eds.) ISI Workshops 2008. LNCS, vol. 5075, pp. 377–383. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  53. Sun, Y., Shimada, S., Taniguchi, Y., Kojima, A.: A novel region-based approach to visual concept modeling using web images. In: ACM Multimedia, pp. 635–638 (2008)

    Google Scholar 

  54. Swan, R., Allan, J.: Extracting significant time varying features from text. In: Proceedings of the Eighth International Conference on Information and Knowledge Management, pp. 38–45 (1999)

    Google Scholar 

  55. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1958–1970 (2008), http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.128

    Article  Google Scholar 

  56. Tsikrika, T., Diou, C., de Vries, A.P., Delopoulos, A.: Image annotation using clickthrough data. In: 8th ACM International Conference on Image and Video Retrieval, Santorini, Greece (2009)

    Google Scholar 

  57. Verbeek, J.J., Triggs, B.: Region classification with markov field aspect models. In: CVPR (2007)

    Google Scholar 

  58. Wu, L., Hua, X.S., Yu, N., Ma, W.Y., Li, S.: Flickr distance. ACM Multimedia, 31–40 (2008)

    Google Scholar 

  59. Wu, Z., Palmer, M.: Verm semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, New Mexiko, USA, pp. 133–138 (1994)

    Google Scholar 

  60. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: KDD 2007: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833. ACM, New York (2007)

    Chapter  Google Scholar 

  61. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. Int. J. Comput. Vision 73(2), 213–238 (2007), http://dx.doi.org/10.1007/s11263-006-9794-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nikolopoulos, S., Chatzilari, E., Giannakidou, E., Papadopoulos, S., Kompatsiaris, I., Vakali, A. (2011). Leveraging Massive User Contributions for Knowledge Extraction. In: Bessis, N., Xhafa, F. (eds) Next Generation Data Technologies for Collective Computational Intelligence. Studies in Computational Intelligence, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20344-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20344-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20343-5

  • Online ISBN: 978-3-642-20344-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics