Abstract
In previous work, EAs were shown to efficiently solve certain equations over partially commutative groups. The EAs depend on the values of several control parameters for success. Generally these values must be tuned to the structure of the equation or problem to be solved. Supposing suitable values are found, a natural concern is stability of the EA under random perturbation of its parameters. This work considers such a model of EA stability by defining neighbourhoods over EA parameter space and examining their properties. We define stability based upon Kolmogorov distance and analyse that distance between repeated random perturbations of parameters, forming a statistical indication of EA stability under parameter perturbation. We then analyse the model for the wider class of general EAs, meaning our model may serve as a framework for parameter optimisation and stability analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Craven, M.J.: Coevolution-Based Parameter Optimization in Group-Theoretic Evolutionary Algorithms. In: Proc. Fourth International Conference on Neural, Parallel and Scientific Computations, Atlanta, USA, pp. 108–113 (2010)
Craven, M.J.: Genetic Algorithms for Word Problems in Partially Commutative Groups. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 48–59. Springer, Heidelberg (2007)
Györfi, L., Vajda, I., van der Meulen, E.: Minimum Kolmogorov Distance Estimates of Parameters and Parametrized Distributions. Metrika 43, 237–255 (1996)
Ko, K.: Braid Group and Cryptography, 19th SECANTS, Oxford, UK (2002)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)
Reidys, C., Stadler, P.: Combinatorial Landscapes. SIAM Review 44, 3–54 (2002)
Stadler, P.: Fitness Landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 187–207. Springer, Heidelberg (2002)
Stanley, R.: Enumerative Combinatorics 1. Cambr. Stud. Adv. Math. 49 (1999)
van Nimwegen, E., Crutchfield, J., Mitchell, M.: Finite Populations Induce Metastability in Evolutionary Search. Phys. Lett. A 229, 144–150 (1997)
Wrathall, C.: The Word Problem for Free Partially Commutative Groups. J. Symbolic Comp. 6, 99–104 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Craven, M.J., Jimbo, H.C. (2011). A Kolmogorov-Type Stability Measure for Evolutionary Algorithms. In: Merz, P., Hao, JK. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2011. Lecture Notes in Computer Science, vol 6622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20364-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-20364-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20363-3
Online ISBN: 978-3-642-20364-0
eBook Packages: Computer ScienceComputer Science (R0)