Skip to main content

A Kolmogorov-Type Stability Measure for Evolutionary Algorithms

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6622))

Abstract

In previous work, EAs were shown to efficiently solve certain equations over partially commutative groups. The EAs depend on the values of several control parameters for success. Generally these values must be tuned to the structure of the equation or problem to be solved. Supposing suitable values are found, a natural concern is stability of the EA under random perturbation of its parameters. This work considers such a model of EA stability by defining neighbourhoods over EA parameter space and examining their properties. We define stability based upon Kolmogorov distance and analyse that distance between repeated random perturbations of parameters, forming a statistical indication of EA stability under parameter perturbation. We then analyse the model for the wider class of general EAs, meaning our model may serve as a framework for parameter optimisation and stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Craven, M.J.: Coevolution-Based Parameter Optimization in Group-Theoretic Evolutionary Algorithms. In: Proc. Fourth International Conference on Neural, Parallel and Scientific Computations, Atlanta, USA, pp. 108–113 (2010)

    Google Scholar 

  2. Craven, M.J.: Genetic Algorithms for Word Problems in Partially Commutative Groups. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 48–59. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Györfi, L., Vajda, I., van der Meulen, E.: Minimum Kolmogorov Distance Estimates of Parameters and Parametrized Distributions. Metrika 43, 237–255 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ko, K.: Braid Group and Cryptography, 19th SECANTS, Oxford, UK (2002)

    Google Scholar 

  5. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  6. Reidys, C., Stadler, P.: Combinatorial Landscapes. SIAM Review 44, 3–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Stadler, P.: Fitness Landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 187–207. Springer, Heidelberg (2002)

    Google Scholar 

  8. Stanley, R.: Enumerative Combinatorics 1. Cambr. Stud. Adv. Math. 49 (1999)

    Google Scholar 

  9. van Nimwegen, E., Crutchfield, J., Mitchell, M.: Finite Populations Induce Metastability in Evolutionary Search. Phys. Lett. A 229, 144–150 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wrathall, C.: The Word Problem for Free Partially Commutative Groups. J. Symbolic Comp. 6, 99–104 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Craven, M.J., Jimbo, H.C. (2011). A Kolmogorov-Type Stability Measure for Evolutionary Algorithms. In: Merz, P., Hao, JK. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2011. Lecture Notes in Computer Science, vol 6622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20364-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20364-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20363-3

  • Online ISBN: 978-3-642-20364-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics