Skip to main content

Applying Linear Models to Learn Regulation Programs in a Transcription Regulatory Module Network

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2011)

Abstract

The module network method has been widely used to infer transcriptional regulatory network from gene expression data. A common strategy of module network learning algorithms is to apply regression trees to infer the regulation program of a module. In this work we propose to apply linear models to fulfill this task. The novelty of our method is to extract the contrast in which a module’s genes are most significantly differentially expressed. Consequently, the process of learning the regulation program for the module becomes one of identifying transcription factors that are also differentially expressed in this contrast. The effectiveness of our algorithm is demonstrated by the experiments in a yeast benchmark dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nitrogen regulation in saccharomyces cerevisiae. Gene 290(1-2), 1–18 (2002)

    Google Scholar 

  2. Cunningham, T.S., Rai, R., Cooper, T.G.: The Level of DAL80 Expression Down-Regulates GATA Factor-Mediated Transcription in Saccharomyces cerevisiae. J. Bacteriol. 182(23), 6584–6591 (2000)

    Article  Google Scholar 

  3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95(25), 14863–14868 (1998)

    Article  Google Scholar 

  5. Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J.J., Gardner, T.S.: Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biology 5(1), 54–66 (2007)

    Article  Google Scholar 

  6. Friedman, N.: Inferring Cellular Networks Using Probabilistic Graphical Models. Science 303(5659), 799–805 (2004)

    Article  Google Scholar 

  7. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Mol. Biol. Cell 11(12), 4241–4257 (2000)

    Article  Google Scholar 

  8. Joshi, A., De Smet, R., Marchal, K., Van de Peer, Y., Michoel, T.: Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics 25(4), 490–496 (2009)

    Article  Google Scholar 

  9. Joshi, A., Van de Peer, Y., Michoel, T.: Analysis of a Gibbs sampler method for model-based clustering of gene expression data. Bioinformatics 24(2), 176–183 (2008)

    Article  Google Scholar 

  10. Kutner, M.H., Neter, J., Nachtsheim, C.J., Li, W.: Applied Linear Statistical Models. McGraw-Hill Irwin, New York (2005)

    Google Scholar 

  11. Li, J., Liu, Z.J., Pan, Y.C., Liu, Q., Fu, X., Cooper, N.G., Li, Y., Qiu, M., Shi, T.: Regulatory module network of basic/helix-loop-helix transcription factors in mouse brain. Genome Biol. 8(11), R244 (2007)

    Article  Google Scholar 

  12. Monteiro, P.T., Mendes, N.D., Teixeira, M.C., d’Orey, S., Tenreiro, S., Mira, N.P., Pais, H., Francisco, A.P., Carvalho, A.M., Lourenco, A.B., Sa-Correia, I., Oliveira, A.L., Freitas, A.T.: YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucl. Acids Res. 36(suppl. 1), 132–136 (2008)

    Google Scholar 

  13. Qi, J., Michoel, T., Butler, G.: A regression tree-based gibbs sampler to learn the regulation programs in a transcription regulatory module network. In: Proceedings of 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–8 (2010)

    Google Scholar 

  14. Segal, E., Pe’er, D., Regev, A., Koller, D., Friedman, N.: Learning module networks. Journal of Machine Learning Research 6, 557–588 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34(2), 166–176 (2003)

    Article  Google Scholar 

  16. Smyth, G.K.: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3 (2004)

    Google Scholar 

  17. Smyth, G.K.: Bioinformatics and Computational Biology Solutions using R and Bioconductor, pp. 397–420. Springer, New York (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qi, J., Michoel, T., Butler, G. (2011). Applying Linear Models to Learn Regulation Programs in a Transcription Regulatory Module Network. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2011. Lecture Notes in Computer Science, vol 6623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20389-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20389-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20388-6

  • Online ISBN: 978-3-642-20389-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics