
The Sensoria Reference Modelling Language

José Fiadeiro1, Antónia Lopes2, Laura Bocchi1, and João Abreu1

1 Department of Computer Science, University of Leicester
2 Department of Informatics, Faculty of Sciences, University of Lisbon

Abstract. This chapter provides an overview of SRML — the Senso-
ria Reference Modelling Language. SRML offers a technology-agnostic
framework in which business services and activities can be modelled in-
dependently of the languages in which components are implemented and
the network protocols through which they communicate. From a method-
ological point of view, SRML supports Service-Oriented Computing as a
new paradigm in which computations result from a distributed orchestra-
tion of software components and external services that are procured on
the fly subject to a negotiation of service level agreements (SLAs). Our
focus will be on the language primitives that SRML offers for orchestrat-
ing business services and activities, defining the interfaces through which
services are offered or procured, and expressing the SLA constraints that
apply to service provision. We also present elements of the mathemat-
ical semantics that underpins the modelling approach, and the way it
supports qualitative and quantitative analysis.

1 Introduction

This chapter provides an overview of the modelling language — SRML — that
we developed in Sensoria. We present the language primitives that SRML offers
for modelling business services and activities, and discuss the methodological ap-
proach that SRML supports, which includes the use of the UMC model-checker
(developed at CNR-ISTI) for qualitative analysis and of the Markovian process
algebra PEPA (developed at the University of Edinburgh) for quantitative anal-
ysis of timing properties. Only some elements of the mathematical semantics
that we developed for the approach are provided in this chapter; full details can
be found in [4,6,32,33,34].

Our approach addresses Service-Oriented Computing (SOC) as a new com-
putational paradigm in which interactions are no longer based on fixed or pro-
grammed exchanges between specific parties — what is known as clientship in
object-oriented programming — but on the provisioning of services by external
providers that are procured on the fly subject to a negotiation of service level
agreements (SLAs). In SOC, the processes of discovery and selection of services
are not coded (at design time) as part of the applications that implement busi-
ness activities, but performed by the middleware according to functional and
non-functional requirements (SLAs). We set ourselves to address the challenge

1

raised on software engineering methodology by the need of declaring such re-
quirements as part of the models of service-oriented applications, reflecting the
business context in which services and activities are designed.

A number of research initiatives have been proposing formal approaches that
address different aspects of SOC independently of the specific languages that
organisations such as OASIS (www.oasis-open.org) and W3C (www.w3.org) are
making available for Web Services. For example, as presented in other chap-
ters of this book, several service calculi (e.g. [30,38]) have been developed in
Sensoria that address operational foundations of SOC (in the sense of how ser-
vices compute) by providing a mathematical semantics for the mechanisms that
support ‘coreography’ or ‘orchestration’ — sessions, message/event correlation,
compensation, inter alia. Whereas such calculi address the need for specialised
language primitives for programming in this new paradigm, they are not abstract
enough to understand the engineering foundations of SOC, i.e. those aspects
(both technical and methodological) that concern the way applications can be
developed to provide business solutions, independently of the languages in which
services are programmed.

This is why, in defining SRML, we used as a source of inspiration the Service
Component Architecture (SCA) [2]. SCA makes available a general assembly
model and binding mechanisms for service components and clients that may
have been programmed in possibly many different languages, e.g. Java, C++,
BPEL, or PHP. However, where SCA supports bottom-up low-level design, our
aim for SRML was, instead, to address top-down high-level design. More specif-
ically, our aim was to develop models and mechanisms that support the design
of complex services from business requirements, and analysis techniques through
which designers can verify or validate properties of composite services that can
then be put together from (heterogeneous) service components using assembly
and binding techniques such as the ones provided by SCA. This shift of emphasis
from programming to (business) modelling, from component interoperability to
business integration, implies that we will be discussing SOC at a level of ab-
straction that is different from most other work on Web services (e.g. [11,44] or
Grid computing (e.g. [35]).

Having this in mind, the chapter proceeds as follows. In Section 2, we provide
an overview of the ‘engineering’ architecture and processes that we see support-
ing SOC in Global Computing. In Section 3, we provide a brief overview of
how we support the transition from business requirements to high-level design
models using a (service-oriented) extension of use-case diagrams. In Section 4,
we put forward the coordination model on which SRML is based. In Section
5, we present the modelling primitives of SRML. In Section 6, we discuss our
model of configuration management. In Section 7, we discuss the use of model-
checking techniques for analysing functional properties of complex services. Fi-
nally, in Section 8, we discuss the use of the Markovian process algebra PEPA for
analysing timing properties. In Appendix A, we collect the different icons used
in the graphical representation of modules. As a running example, we will use
a mortgage-brokerage service that is part of the financial case study developed

2

by Sensoria. The full specification of the service module GetMortgage is
presented in Appendix B. Although our approach is formal, in the sense that a
mathematical semantics is available for all the primitives of the language [4,33],
the paper is mostly mathematics-free with the exception of Sections 4.3, 6, 7.1
and 8.

2 Engineering Software for Service-Overlay Computers

The term ‘service’ is being used in a wide variety of contexts, often with differ-
ent meanings. In Sensoria, we address the notion of ‘service-overlay computer’,
by which we mean the development of highly-distributed loosely-coupled appli-
cations over ‘global computers’ (GC) — “computational infrastructures avail-
able globally and able to provide uniform services with variable guarantees for
communication, cooperation and mobility, resource usage, security policies and
mechanisms” [1].

In this setting, there is a need to rethink the way we engineer software appli-
cations, moving from the typical ‘static’ scenario in which components are assem-
bled to build a (more or less complex) system that is delivered to a customer, to
a more ‘dynamic’ scenario in which (smaller) applications are developed to run
on such global computers and respond to business needs by interacting with ser-
vices and resources that are globally available. In this latter setting, there is much
more scope for flexibility in the way business is supported: business processes
can be viewed globally as emerging from a varying collection of loosely-coupled
applications that can take advantage of the availability of services procured on
the fly when they are needed.

In this context, the notion of ‘system’ itself, as it applies to software, also
needs to be revisited. If we take one of the accepted meanings of system — a
combination of related elements organised into a complex whole — we can see why
it is not directly applicable to SOC/GC: services get combined at run time and
redefine the way they are organised as they execute; no ‘whole’ is given a priori
and services do not compute within a fixed configuration of a ‘universe’. In a
sense, we are seeing reflected in software engineering the trend for ‘globalisation’
that is now driving the economy.

SOC brings to the front many aspects that have already been discussed about
component-based development (CBD), for instance in [25]. Given that different
people have different perceptions of what SOC and CBD are, we will simply
say that, in this paper, we will take CBD to be associated with what we called
the static engineering approach. For instance, starting from a universe of (soft-
ware) components as structural entities, Broy et al view a service as a way of
orchestrating interactions among a subset of components in order to obtain some
required functionality — “services coordinate the interplay of components to ac-
complish specific tasks” [17]. As an example, we can imagine that a bank will
have available a collection of software components that implement core function-
alities such as computing interests or charging commissions, which can be used
in different products such as savings or loans.

3

SOC differs from this view in that there is no such fixed system of com-
ponents that services are programmed to draw from but, rather, an evolving
universe of software applications that service providers publish so that they can
be discovered by (and bound to) business activities as they execute. For instance,
if documents need to be exchanged as part of a loan application, the bank may
rely on an external courier service instead of imposing a fixed one. In this case,
a courier service would be discovered for each loan application that is processed,
possibly taking into account the address to which the documents need to be sent,
speed of delivery, reliability, and so on. However, the added flexibility provided
through SOC comes at a price — dynamic interactions impose the overhead of
selecting the co-party at each invocation — which means that the choice be-
tween invoking a service and calling a component is a decision that needs to be
taken according to given business goals. This is why SRML makes provision for
both SOC and CBD types of interaction (through requires and uses interfaces
as discussed in Section 3).

To summarise, the impact that we see (and explore) SOC to have on software
engineering methodology stems from the fact that applications are built without
knowing who will provide services that may be required, and that the discovery
and selection of such services is performed, on the fly, by dedicated middleware
components. This means that application developers cannot rely on the fact that
someone will interact with them to implement the services that may be required
so as to satisfy their requirements. Therefore, service-oriented ‘clientship’ needs
to be based on shared ontologies of data and service provision. Likewise, service
development is not the same as developing software applications to a customer’s
set of requirements: it is a separate business that, again, has to rely on shared
ontologies of data and service provision so that providers can see their services
discovered and selected.

This view is summarised in Figure 1, where we elaborate beyond the basic
Service-Oriented Architecture [8] to make explicit the different stakeholders and
the way they interact, which is important for understanding the formal model
that we are proposing. In this model, we distinguish between ‘business activities’
and ‘services’ as software applications that pertain to different stakeholders (see
[36] for a wider discussion on the stakeholders of service-oriented systems):

– Activities correspond to applications developed according to requirements
provided by a business organisation, e.g. the applications that, in a bank,
implement the financial products that are made available to the public. The
activity repository provides a means for a run-time engine to trigger such ap-
plications when the corresponding requests are published, say when a client
of the bank requests a loan at a counter or through on-line banking. Activi-
ties may be implemented over given components (for instance, a component
for computing and charging interests) in a traditional CBD way, but they
can also rely on services that will be procured on the fly using SOC (for
instance, an insurance for protecting the customer in case he/she is tem-
porarily prevented from re-paying the loan due to illness or job loss). In
SRML, activities are modelled through activity modules. As discussed in

4

Section 3, these identify the components that activities need to be bound to
when they are launched and the services (types) that they may require as
they execute. Activity modules also include a specification of the workflow
that orchestrates the interactions among all the parties involved in the activ-
ity and a number of SLA constraints used for negotiating service provision
from external parties.

– Services differ from activities in that they are not developed to satisfy specific
business requirements of a given organisation but to be published (in service
repositories) in ways that allow them to be discovered when a request for
an external service is published in the run-time environment. As such, they
are classified according to generic service descriptions — what in Section 5.1
we call ‘business protocols’ — that are organised in a hierarchical ontology
to facilitate discovery. Services are typed by service modules, which, like ac-
tivity modules, identify the components and additional services that may
be required together with a specification of the workflow that orchestrates
the interactions among them so as to deliver the properties declared in the
service descriptions — their ‘provides-interfaces’. Service modules also spec-
ify service-level agreements that need to be negotiated during matchmaking
and selection.

Current configuration
(software components and interaction protocols that

interconnect them)

Triggers

Reconfiguration

Discovery and selection Invocation

Business
IT teams

Service
providers

Publication Application
development

Ontology
(data and service

descriptions)

Configuration Management

Service repository

t
t

Activity repository

Fig. 1. Overall ‘engineering’ architecture and processes.

5

– The configuration management unit (discussed in Section 6) is responsible
for the binding of the new components and connectors that derive from the
instantiation of new activities or services. A formal model can be found in
[33].

– The ontology unit is responsible for organising both data and service de-
scriptions. In this paper, we do not discuss the classification and retrieval
mechanisms per se. See, for instance, [39,45] for some of the aspects involved
when addressing such issues.

Notice that the ‘business IT teams’ and the ‘service providers’ can be totally
independent and unrelated: the former are interested in supporting the business
of their companies or organisations, whereas the latter run a business of their
own. They can also belong to the same organisation, as illustrated in our case
study. In both cases, they share the ontology component of the architecture so
that they can do business together.

3 From Use-Case Diagrams to SRML Modules

Before we introduce the modelling primitives that SRML offers for high-level
(business) design, it is important to show how traditional use-case diagrams
can be extended so as to support the engineering approach that we described in
Section 2. In order to illustrate our approach, we consider the (simplified) case of
a financial services organisation that wants to offer a mortgage-brokerage service
GetMortgage. This service involves the following steps:

– Proposing the best mortgage deal to the customer that invoked the service;
– Taking out the loan if the customer accepts the proposal;
– Opening a bank account associated with the loan if the lender does not

provide one;
– Getting insurance if required by either the customer or the lender.

In our example, the selection of a lender is restricted to firms that are consid-
ered to be reliable. For this reason, we consider an UpdateRegistry activity
supporting the management of a registry of reliable lenders. This activity relies
on an external certification authority that may vary according to the identity of
the lender.

3.1 Use-case diagrams for service-oriented modelling

Traditionally, use-case diagrams are used for providing an overview of usage
requirements for a system that needs to be built. As discussed in Section 2,
and reporting to Figure 1, our aim is to address a novel development process
that does not aim at the construction of a ‘system’ but, rather, of two kinds
of software applications — services and activities. Activities are bound to other
software components statically (in a component-based way) and services are
bound dynamically (in a service-oriented way). Services and activities have the

6

particularity that each has a single usage requirement. Hence, they can be per-
ceived as use cases. On the other hand, from a business point of view, two or
more services and activities developed can belong to one logical unit.

In our example, UpdateRegistry should be treated as an activity in the
sense that it is driven by the requirements of the financial services organisation
itself — it will be stored in an activity repository and will be invoked by internal
applications (e.g., a terminal interface). On the other hand, GetMortgage
is meant to be placed in a service repository for being discovered and bound
to activities or services running ‘globally’, i.e. not necessarily in the financial
services organisation.

Both UpdateRegistry and GetMortgage can be seen to operate as part
of a same business unit and, hence, it makes sense to group them in the same use-
case diagram — use-case diagrams are useful for structuring usage requirements
of units of business logic. In order to reflect the methodological implications of
our approach, we propose a number of extensions to the standard notation of
use cases. Figure 2 uses the mortgage example to illustrate our proposal: the
diagram represents a business logical unit with the two use cases identified be-
fore. The rectangle around the use cases, which in traditional use-case diagrams
indicates the boundary of the system at hand, is used to indicate the scope of
the business unit. Anything within the box represents functionality that is in
scope and anything outside the box is considered not to be in scope.

For the UpdateRegistry activity, the primary actor is Registry Manager;
its goal is to control the way a registry of trusted lenders is updated. The registry
itself is regarded as a supporting actor. The Certification Authority on which
UpdateRegistry relies is also considered a supporting actor in the use case
because it is an external service that needs to be discovered based on the nature
of the lender being considered.

In the GetMortgage service, the primary actor is a Customer that wants
to obtain a mortgage. The use case has four supporting actors: Lender, Bank,
Insurance and Registry. The Lender represents the organisation (e.g., a bank or
building society) that lends the money to the customer. Because only reliable
firms can be considered for the selection of the lender, the use case involves
communication with Registry. When the lender does not provide a bank account,
the use case involves an external Bank for opening a new account. Similarly, the
use case involves interaction with an Insurance provider for situations where the
lender requires insurance or the customer decides to get one.

As in traditional use cases, we view an actor as any entity that is external
to the business unit and interacts with at least one of its elements in order to
perform a task. As motivated above, we can distinguish between different kinds
of actors, which led us to customise the traditional icons as depicted in Figure
2. These allow us to discriminate between user/requester and resource/service
actors. User-actors and requester-actors are similar to primary actors in tradi-
tional use-case diagrams in the sense that they represent entities that initiate the
use case and whose goals are fulfilled through the successful completion of the
use case. The difference between them is that a user-actor is a role played by an

7

entity that interacts with the activity, while a requester-actor is a role played by
one or more software components operating as part of the activity that triggers
the discovery of the service.

For instance, the user-actor Registry Manager represents an interface for an
employee of the business organisation that is running Mortgage Finder whereas
the requester-actor Customer represents an interface for a service requester that
can come from any external organisation. A requester-actor can be regarded as
an interface to an abstract user of the functionality that is exposed as a service;
it represents the range of potential customers of the service and the requirements
typically derive from standard service descriptions stored in service repositories
such as the UDDI. In SRML, and reporting to Figure 1, these descriptions are
given by business protocols (discussed in Section 5.1) and organised in a shared
ontology, which facilitates and makes the discovery of business partners more

Mortgage Finder

Customer

Lender

Bank

Insurance
UpdateRegistry

Certification
Authority

Registry

GetMortgage

resource-actoruser-actor requester-actor

Registry
Manager

service-actor

Fig. 2. Service-oriented use-case diagram for Mortgage Finder.

8

effective. The identification of requester-actors may take advantage of existing
descriptions in the ontology or it may identify new business opportunities. In this
case, the ontology would be extended with new business protocols corresponding
to the new types of service.

Resource-actors and service-actors of a use case are similar to supporting
actors in traditional use-case diagrams in the sense that they represent entities
to rely on in order to achieve the underlying business goal. The difference is that
a service-actor represents an outsourced functionality to be procured on the fly
and, hence, will typically vary from one instance of the use case to another,
whereas a resource-actor is an entity that is statically bound and, hence, is the
same for all instances of the use case. Resource-actors are typically persistent
sources/repositories of information. In general, they are components that are
already available to be shared within a business organisation.

The user- and resource-actors, which we represent at the top and bottom
of our specialised use-case diagrams, respectively, correspond in fact to the ac-
tors that are typically presented on the left and right-hand side in traditional
use-case diagrams, respectively. In contrast, the horizontal dimension of the new
diagrams, comprising requester-and service-actors, captures the types of inter-
actions that are specific to SOC.

We assume that every use case corresponds to a service-oriented artefact
and that the association between a primary actor and a use case represents an
instantiation/invocation. For this reason, in this context, we constrain every use
case to be associated with only one primary actor (either a requester or a user).

3.2 Deriving the structure of SRML modules

The proposed specialisations of use-case diagrams allow us to identify and derive
a number of aspects of the structure of SRML modules — the main modelling
primitives that we use for services and activities. Each use case, representing
either a service or an activity, gives rise to a SRML service module or activity
module, respectively. Figure 3 presents the structure of the modules derived from
the use-case diagram in Figure 2.

A SRML module provides a formal model of a service or activity in terms of
a configuration of ‘interfaces’ (formal specifications) to the parties involved. In
the case of activity modules:

– A serves-interface (at the top-end of the module) identifies the interactions
that should be maintained between the activity and the rest of the system
in which it will operate. This interface results from the user-actor of the
corresponding use case.

– Uses-interfaces (at the bottom-end of the module) are defined for those
(persistent) components of the underlying configuration that the activity
will need to interact with once instantiated. These interfaces result from the
resource-actors of the corresponding use case and provide formal descriptions
of the behaviour required of the actual interfaces that need to be set up for
the activity to interact with components that correspond to (persistent)
business entities.

9

– Requires-interfaces (on the right-hand boundary of the module) are defined
for services that the activity will have to procure from external providers
if and when needed. Typically, these reflect the structure of the business
domain itself in the sense that they reflect the existence of business services
provided outside the scope of the local context in which the activity will
operate. These interfaces result from the service-actors of the corresponding
use case.

– Component and wire-interfaces (inside the module) are defined for orches-
trating all these entities (actors) in ways that will deliver stated user re-
quirements through the serves-interface. These interfaces are not derived
from the use-case diagram but from the description of the corresponding
business requirements, i.e. they result from a design step. Typically, a de-
signer will choose pre-defined patterns of orchestration that reflect business
components that will be created in support of the activity or chosen from a

GETMORTGAGE

SLA_GM

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CM CR:
 Customer

ME

ML

MB

MI

intMA

UPDATEREGISTRY

SLA_UR

RE:
Registry

MC:
Management
Coordinator

CA:
Certification

Autority

intCA

MR

MA

RM:
Registry
Manager

RM
intMC

Fig. 3. The SRML modules for the activity UpdateRegistry and the service Get-
Mortgage.

10

portfolio of components already available for reuse within the business organ-
isation. The choice of the internal architecture of the module (components
and wires) should also reflect the nature of the business communication and
distribution network over which the activity will run.

In the case of a service module, a similar diagrammatic notation is used
except that a provides-interface is used instead of a serves-interface:

– The provides-interface should be chosen from the hierarchy of standard busi-
ness protocols (i.e., descriptions of the same type of those used for requires-
interfaces) because the purpose here is to make the service available to the
wider market, not to a specific client. It derives from the requester-actor of
the corresponding use case.

– Some of the component interfaces will correspond to standard components
that are part of the provider’s portfolio. For instance, these may be application-
domain dependent components that correspond to typical entities of the
business domain in which the service provider specialises.

– Uses-interfaces should be used for those components that the service provider
has for insuring persistence of certain effects of the services that it offers.

In addition, both activity and service modules include:

– An internal configuration policy (indicated by the symbol), which iden-
tifies the triggers of the external service discovery process as well as the
initialisation and termination conditions of the components that instantiate
the component-interfaces.

– An external configuration policy (indicated by the symbol), which
consists of the variables and constraints that determine the quality profile
of the activity to which the discovered services need to adhere.

The language primitives that are used in SRML for defining all these inter-
faces as well as the configuration policies are detailed in Section 5. A summary
of the graphical notation can be found in Appendix A at the end of the paper.

4 The Coordination Model

The interfaces of a SRML module identified through a use-case diagram reflect
business dependencies of services or activities, not the interfaces that software
components offer to be interconnected: modules are not models of components
but of business processes. In this section, we detail the coordination model that
SRML adopts for component interconnection, i.e. we address the nature of the
interfaces that components offer and the way wires interconnect them. We also
outline a formalisation of this model, full details of which are available from [4].

4.1 Conversational interactions

Typically, in CBD, one organises component interfaces (what they offer to and
expect from the rest of the system) in ports, which include the protocols that

11

regulate message exchange at those ports. In SRML, we have fixed the nature of
the interactions and protocols followed by components and wires. We distinguish
the following types of interactions:

r&s The interaction is initiated by the co-party, which expects a reply.
The co-party does not block while waiting for the reply.

s&r The interaction is initiated by the party and expects a reply from its
co-party. While waiting for the reply, the party does not block.

rcv The co-party initiates the interaction and does not expect a reply.
snd The party initiates the interaction and does not expect a reply.
ask The party synchronises with the co-party to obtain data.
rpl The party synchronises with the co-party to transmit data.
tll The party requests the co-party to perform an operation and blocks.
prf The party performs an operation and frees the co-party that requested it.

Interactions involve two parties and are described from the point of view of
the party in which they are declared, i.e. ‘receive’ means invocations received
by the party and sent by the co-party, and ‘send’ means invocations made by
the party. Interactions can be synchronous, implying that the party waits for
the co-party to reply or complete, or asynchronous, in which case the party does
not block. Typically, synchronous (blocking) interactions (i.e., ask, rpl, tll and
prf) occur with persistent components, reflecting interconnections based on the
exchange of products (clientship as in OO). The interactions among the compo-
nents responsible for the orchestration and those involving external services are
typically asynchronous (non-blocking, i.e., r&s, s&r, snd and rcv) so that the
parties can engage in multiple, concurrent conversations. Interactions of type
r&s and s&r are conversational (what we call 2-way), i.e. they involve a number
of events exchanged between the two parties:

interaction֠ The event of initiating interaction.
interaction� The reply-event of interaction.
interactionX The commit-event of interaction.
interaction8 The cancel-event of interaction.
interaction> The revoke-event of interaction.

The initiation-event is the only event that can be associated also to 1-way
asynchronous interaction types (i.e., snd rcv). The reply-event is sent by the
co-party, offering a deal or declining to offer one; in the first case, the party
that initiated the conversation may either commit to the deal or cancel the
interaction;after committing, the party can still revoke the deal, triggering a
compensation mechanism. Every 2-way interaction has an associated pledge —
a condition that is guaranteed to hold from the moment a positive reply-event
occurs until either the commit-event, the cancel-event or the expiration time
occurs, whichever happens first. We denote this condition by interaction . See
Figure 4 for some of the possible scenarios (explained further below).

12

All interactions can have parameters for transmitting data when they are
initiated — declared as ֠ . Conversational interactions can also have parameters
for carrying a reply — declared as � — or for carrying data if there is a commit,
a cancel or a revoke — declared as X, 8 and >, respectively. In particular, every
reply-event interaction� has two distinguished parameters:

– Reply is a Boolean parameter that indicates whether the reply is positive,
meaning that the co-party is ready to proceed. The value of interaction.Reply
is False if, for some reason related with the business logic, the request
interaction֠ cannot be fulfilled.

– UseBy is a parameter that, in the case of a positive reply, indicates the dead-
line for receiving the commit and cancel events. The value of this parameter
is an expiration time (including the value +∞) obtained by adding the value
of the configuration variable (non-functional attribute) interaction to the
instant at which interaction� is sent. As discussed in Section 5.2, configu-
ration variables can be subject to negotiation during the discovery/selection
process.

Interactions can be seen as ports in the traditional CBD sense, the associated
events representing the interface of the components. The sequence diagrams in
Figure 4 illustrate the protocol that is associated with every interaction for
which the reply is positive. In the case on the left, the initiator commits to the
pledge; a revoke may occur later on, compensating the effects of the commit-
event interactionX(this can however be constrained by the business logic, for
instance, by defining a deadline for compensation). In the middle, there is a
cancellation; in this situation, a revoke is not available. In the case on the right,
the expiration time occurs without a commit or cancel having occurred; this
implies that no further events for that interaction will occur. In Section 5, we
give examples of the intended usage of these primitives.

Events occur during state transitions in both parties involved in the inter-
action: we use event! in order to refer to the publication of event in the life of
the initiating party, and event? (resp. event¿) for its execution (resp. being dis-
carded) by the party that receives it. The occurrences of event! and event? (or

Fig. 4. The protocol of 2-way interactions when the reply is positive.

13

event¿) may not coincide in time: we consider that there may exist a delay be-
tween publishing and delivering an event. The value of this delay is given by the
configuration variable Delay associated with the wire through which the events
are transmitted (see Figure 5). In Section 8, we explore timing aspects of service
provision in more detail, including the use of PEPA [37] for stochastic analysis.

Fig. 5. The intuitive semantics of delays.

4.2 Deriving interactions from message sequence diagrams

One of the ways that we have found useful for identifying the interactions that
are relevant for defining a given activity or service module is to draw message
sequence diagrams that characterise the interconnections required between the
different parties. For instance, the message sequence diagram in Figure 6 depicts
the workflow that is initiated by the initial request received by GetMortgage
from the customer CR.

4.3 A formal model

The overall coordination model of SRML can be summarised as follows (see
[4] for details). We work over configurations of global computers defined by
a set COMP of components (applications deployed over execution platforms)
linked through wires (e.g. interconnections between components over a given
communication network), the set of which we denote by WIRE.

A state consists of:

– The set PND of the events that are pending in the wires, i.e. the events that
have been published but not yet delivered by the wires to the corresponding
co-parties;

– The set INV of the events that have been invoked, i.e. those that were de-
livered by the wires and are stored locally by the components that received
them, waiting to be processed;

– The time at that state;
– The set of pledges that hold in that state;
– A record of all events that have been published (!), delivered (¡), executed

(?) or discarded (¿);

14

alt

par

MACR

BA

IN

getProposal
askProposal

askProposalgetProposal

getProposal✘

getProposal✓

askProposal✘

askProposal✓

 openAccount
openAccount

getInsurance

signOutLoan

signOutLoan
confirmation

getInsurance

[now>getProposal.UseBy] askProposal✘

[needAccount]

[needInsurance]

LE

Fig. 6. Identifying interactions within GetMortgage.

– The values of all event parameters and configuration attributes.

In this model, state transitions are characterised by what we call a compu-
tation step, consisting of:

– An ordered pair of states SRC (source) and TRG (target);
– A subset DLV of PNDSRC consisting of the events that are pending in the

source state and selected for delivery during that step;
– A set PRC that selects from INV SRC one event for every component that

has events waiting to be processed;
– A subset EXC of PRC consisting of the events that are actually executed

(the others are discarded);
– A set PUB of the events that are published during that step together with

a function that assigns a value to the parameters of each such event.

These elements are subject to the following constraints:

– The set INV TRG of the events in the target state that have been invoked
consists of the events in DLV (i.e. those that are delivered during the step)
together with those already in INV SRC that have not been selected by PRC
to be processed;

15

– The set PNDTRG of the events that are pending at the target state consists
of the events in PUB (i.e. those that are published during the step) together
with the events in PNDSRC that have not been selected by DLV to be
delivered.

That is, the set of events that are pending in wires is updated during each
computation step by removing the events that the wire delivers during that step
— DLV — and adding the events that each component publishes — PUB. We
assume that all the events that are selected by DLV are actually delivered to
the receiving component, i.e. each wire is reliable — see [4] for a model that
considers unreliable wires.

At each step, components may select one of the events waiting to be pro-
cessed; this is captured by the function PRC. The fact each component can only
process one event at a time is justified by the assumption that the internal state
of the components is not necessarily distributed and therefore no concurrent
changes can be made to their states.

The set of events that are waiting to be processed by every component is
updated in each step by removing the event that is processed and adding the
events that are actually delivered to that component. Figure 7 is a graphical

PARTY A PARTY B

INVA INVBPNDw

WIRE
We e'

TRG

PARTY A PARTY B

INVA INVBPNDw

WIRE
W

SRC

PUBA PUBB

PRC(B)
DLVBDLVA

PRC(A)

Fig. 7. Graphical representation of event flow from the point of view of a wire w
between parties A and B.

16

representation of the flow of events that takes place during a computation step
from the point of view of components A and B connected by a wire W.

5 The Modelling primitives of SRML

5.1 Behaviour specification languages

The entities involved in service and activity modules — component interfaces,
requires-interfaces, provides-interfaces, uses-interfaces, serves-interfaces and wire-
interfaces — can be defined in SRML independently of one another as design-
time reusable resources. For that purpose, we have defined a number of different
but related languages, which we present and illustrate in this section using frag-
ments of our running example.

Signatures All the languages that we use have in common the declaration of
the interactions (in the sense of Section 4.1) in which the corresponding entity
can be involved — what we call a signature. These declarations are strictly local
to the entity, i.e. we cannot rely on global names to establish interconnections
between entities — that is the role of the wires. As an example, consider the
component-interface MA, which we declared to be of type MortgageAgent. The
corresponding signature is presented in Figure 8.

Interactions are classified according to the types defined in Section 4.1. For
instance, getProposal is declared to be of type r&s, i.e. as being an asynchronous
conversational interaction that is invoked by the co-party. This interaction has
three parameters that carry data produced by the co-party at invocation time —
the user profile, income and preferences for the mortgage. Such parameters are
declared under the symbol ֠ . Parameters that are used by the mortgage agent
for sending the reply are declared under the symbol � — in the case at hand,
the details of mortgage proposal and the cost of the mortgage-brokerage service
for taking out the loan if the customer accepts the proposal.

The co-party of the mortgage agent in this interaction is not named (the
same applies to all other interactions, as discussed in Section 4.1). This makes
it possible to specify the behaviour that can be assumed of the mortgage agent
at the interface, independently of the way it is instantiated within any given
system.

The signature of MortgageAgent includes six additional interactions, all of
which are self-initiated. While askProposal, getInsurance, openAccount and sig-
noutLoan are conversational and asynchronous (i.e. of type s&r or snd), the
interactions getLenders and regContract are synchronous. In the case of getLen-
ders, the mortgage agent has to synchronise with the co-party to obtain data
(the identification of the lenders that meet the user preferences for the mortgage)
while, in the case of regContract, the party requests the co-party to perform an
operation (register a loan contract) and blocks until the operation is completed.

17

Business roles In SRML, interfaces of service components are typed by busi-
ness roles. A business role is specified by defining the way in which the inter-
actions declared in the signature are orchestrated. For that purpose, we offer
a textual declarative language based on states and transitions that is general
enough to support languages and notations that are typically used for orches-
trating workflows such as BPEL and UML statecharts.

In a typical business role, a set of variables provides an abstract view of the
state of the component and a set of transitions models the activities performed
by the component, including the way it interacts with its co-parties. For instance,
the local state of a mortgage agent is defined as presented in Figure 9.

Fig. 8. The signature of MortgageAgent.

Fig. 9. Local state of the MortgageAgent.

18

Typically, we use a variable (s in our example) to model control flow, includ-
ing the way the component reacts to triggers. The other state variables are used
for storing data that is needed at different stages of the orchestration.

Each transition has an optional name and a number of possible features. See
Figure 10 for an example.

– A trigger is either the processing of an event, like in the example above, or a
state condition. The former means that the transition is triggered when the
component processes the event, and the latter when the condition changes
from false to true.

– A guard is a condition that identifies the states in which the transition can
take place — in GetClientRequest, the state INITIAL. If the trigger is an
event and the guard is false, the event is processed but not executed (it is
discarded).

– A sentence specifies the effects of the transition in the local state. Given
a state variable var, we use var’ to denote the value that var takes after
the transition. In the case illustrated in Figure 10, we change the value of s
and store the identification of the lenders that match the users-preferences.
This data is obtained from a co-party through the synchronous interaction
getLenders. As already mentioned, this co-party is not identified in the busi-
ness role: we will see that, because of the way components are wired, the
co-party in this interaction within the module GetMortgage is RE of
type Registry — the interface of a persistent component.

Another sentence specifies the events that are published during the transi-
tion, including the values taken by their parameters. In this sentence, we use
variables and primed variables as in the ‘effects’-section. In the example, if there
is at least one lender that matches the user-preferences, the interaction askPro-
posal is initiated in order to get a mortgage proposal from a lender. Once again,
the corresponding co-party is not named: we will see that, within the module
GetMortgage, this is an external service provided by a bank or building soci-
ety that needs to be discovered and bound to the mortgage agent. If no lenders
are found that match the user-preferences, a negative reply to getProposal is
published.

Fig. 10. Transition GetClientRequest.

19

Another example of a transition is GetLenderProposal presented in Figure
11. In this case, the transition is triggered by the processing of the reply to
askProposal and the effect is to send a reply to getProposal (the parameter Reply
of askProposal and the proposal received in proposal are both transmitted by
the reply-event). The transition also defines the cost of the mortgage-brokerage
service for taking out the loan if the customer accepts the proposal.

Specifications may also declare configuration variables, which are discussed
in Section 5.2. These variables are instantiated at run time, when a new session
of the service starts, possibly as a result of the negotiation process involved
in the discovery of the service. In the case of MortgageAgent, we declare the
configuration variable Charge that determines an additional charge over the
base price of the mortgage-brokerage service. In Section 5.2 we will see that, in
the module GetMortgage, this extra-charge relates to the period of validity
of the loan proposal offered by the service, which is also subject to negotiation.

Notice that, through business roles, SRML offers a very flexible way for
modelling control flow because transitions are decoupled from interactions and
changes to state variables, which offers a declarative style of defining orchestra-
tions. For instance, the transition TimeoutProposal defined below is triggered
once the reply to getProposal expires; in this situation, the component informs
the lender that the proposal was not accepted and moves to the final state.

Other aspects of this declarative style include the possibility of leaving certain
aspects under-specified that can be refined at later stages of the development
process. This is why the various aspects of a transition are specified as sentences
using a logical notation.

More traditional (control-oriented) notations can be used instead for defin-
ing orchestrations. In Figure 13 we show how part of the orchestration of Mort-
gageAgent can be defined using a UML statechart. Because statecharts focus only

Fig. 11. Transition GetLenderProposal.

Fig. 12. Transition TimeOutProposal.

20

on control flow, we would need to provide a separate specification for the data
flow. In [15], we have also shown how BPEL can be encoded in our language.

<< StateNode>>
PROPOSAL_ACCEPTED

start

 / askProposal

<<StateNode>>
INITIAL

<< StateNode>>
WAIT_PROPOSAL

<< StateNode>>
WAIT_DECISION

askProposal /

<<StateNode>>
FINAL

 / askProposal ✘

<<StateNode>>
SIGNING

/ signOutLoan

end

[askProposal.needInsurance] /
getInsurance

[askProposal.needAccount] /
openAccount

getInsurance / openAccount/

[¬ askProposal.needAccount]

[askProposal.Reply] / getProposal

now>getProposal.UseBy /

[¬ askProposal.needInsurance]

<<TransitionNode>>
GetClientRequest

getProposal /

<<TransitionNode>>
GetLenderProposal

[¬askProposal.Reply] / getProposal

<<TransitionNode>>
TimeoutProposal

 / askProposal ✘

<<TransitionNode>>
ProposalNotAccepted

<<TransitionNode>>
ProposalAccepted

getProposal✓ [now<askProposal.UseBy]/

 [needAccount ∨ needInsurance]/

 [¬ needAccount ∧ ¬ needInsurance] / signOutLoan

<<TransitionNode>>
Conclude

signOutLoan /

 / confirmation getProposal ✘ /

R1

P1

GetInsurance

R2

P2

GetAccount

Fig. 13. Using UML statecharts for defining orchestrations in business roles.

Business protocols In SRML, a module may declare a number of requires-
interfaces, each of which provides an abstraction (type) for a service that will
have to be procured from external providers, if and when needed — what, in
SCA, corresponds to an “External Service”. In the case of a service module, a
provides-interface is also declared for describing the service that is offered by the
module, corresponding to what in SCA is called an “Entry Point”.

Both types of external interfaces are typed with what we call business pro-
tocols, or just protocols if it is clear from the context what kind of protocols we
are addressing. Like business roles, protocols include a signature. The difference
is that, instead of an orchestration, we provide a set of properties. In the case
of a requires-interface, these are the properties required of the external service
that needs to be procured. In the case of a provides-interface, we specify the
properties offered by the service orchestrated by the module.

21

In the case of business protocols used for specifying the required services, we
declare the interactions in which the external entity (to be procured) must be
able to be involved as a (co-)party and we specify the protocol that it has to
adhere to. For instance, the service GetMortgage expects the behaviour from
a lender described in Figure 14.

Fig. 14. The specification of business protocol Lender.

Notice that the interactions are again named from the point of view of the
party concerned — the lender in the case at hand. The specified properties
require the following:

– In the initial state, the lender is ready to engage in requestMortgage.
– After receiving the commitment to the mortgage proposal, the lender be-

comes ready to engage in requestSignOut.

The language in which these properties are expressed uses a set of patterns
that capture commonly occurring requirements in the context of service-oriented
interactions. In Section 7.1, we present their semantics in terms of formulas of
the temporal logic UCTL [51]. Intuitively, they correspond to traces of the form
depicted in Figure 15.

The intuitive semantics of these patterns is as follows:

– initiallyEnabled e: The event e is enabled (cannot be discarded) in the
initial state and remains so until it is executed.

– s after a: the state condition s holds forever after the action condition a
becomes true.

– a enables e until b: The event e cannot be executed before a holds and
remains enabled after a becomes true until it is either executed or b becomes
true (if ever).

22

¬ e?

a

¬ e¿

¬ e? ∧ ¬a

a enables e

¬ e!

a e!
¬ e! ∧ ¬a

a ensures e

s after a

s

a

¬ e?

a

¬ e¿

b

¬ e?

a enables e until b

¬ e?

a

¬ e¿ ∧ ¬b

¬ e? ∧ ¬a

Fig. 15. The traces that correspond to the patterns.

– a enables e: The event e cannot be executed before a holds and remains
enabled after a becomes true until it is executed. It is easy to see that this
pattern is equivalent to a enables e until false.

– a ensures e: The event e cannot be published before a holds, and is published
sometime after a becomes true.

Business protocols are also used for modelling the behaviour that users can
expect from a service. This subsumes what, in [8], are called external specifica-
tions:

In particular, a trend that is gathering momentum is that of including, as
part of the service description, not only the service interface, but also the
business protocol supported by the service, i.e. the specification of which
message exchange sequences are supported by the service, for example
expressed in terms of constraints on the order in which service operations
should be invoked.

23

For instance, the provides-interface of GetMortgage is typed by the busi-
ness protocol presented in Figure 16.

This business protocol specifies that the service offered by GetMortgage
relies on two asynchronous interactions — getProposal and confirmation. The
properties offered by the service are:

– A request for getProposal is enabled when the service is activated.
– The service brokerage has a base price that can be subject to an extra charge,

subject to negotiation.
– A confirmation carrying the loan contract will be issued upon receipt of the

commit to getProposal.

Layer protocols A module in SRML may also declare one or more uses-
interfaces. These provide abstractions of components corresponding to resource
actors as discussed in Section 3.1 — the components with which the service
needs to interact in order to ensure persistent effects.

Uses-interfaces are specified through what we call layer protocols. Like busi-
ness protocols, layer protocols are defined by a signature and a set of properties.
However, where the interactions used in business protocols are asynchronous,
those declared in a layer protocol can be synchronous and blocking.

As an example, consider the specification of the layer protocol fulfilled by
a registry as shown in Figure 17. It defines that a registry can be queried —
through the interaction getLenders — about the registered lenders that meet
given users preferences, and is able to register a new contract through the oper-
ation registerContract.

The properties of synchronous interactions are typically in the style of pre/post-
condition specifications of methods.

Fig. 16. The specification of business protocol Customer.

24

Interaction protocols A module consists of a number of interfaces connected
through wires. Wires are labelled by connectors that coordinate the interactions
in which the parties are jointly involved. In SRML, we model the interaction
protocols involved in these connectors as separate, reusable entities.

Just like business roles and protocols, an interaction protocol is specified
in terms of a number of interactions. Because interaction protocols establish a
relationshipbetween two parties, the interactions in which they are involved are
divided in two subsets called roles — A and B. The semantics of the protocol
is provided through a collection of sentences — what we call interaction glue —
that establish how the interactions are coordinated.

As an example, consider the protocol depicted in Figure 18, which is used in
the wire that connects MortgageAgent and Insurance. This is a ‘straight’ protocol
that connects directly two entities over two conversational interactions that have
two ֠ -parameters and one � -parameter. The property S1 ≡ R1 establishes that
the events associated with each interaction are the same, e.g. that S1 is the same
as R1.

The names used in interaction protocols are generic to facilitate reuse. In
fact, the specification itself is parameterised by the data sorts involved in the
interactions. Parameterisation (which is also available for business roles and pro-
tocols) provides the means for defining families of specifications. The parameters
are instantiated at design time when the specifications are used in the definition
of a module. This can be seen at the end of this Section.

Fig. 17. The specification of layer protocol Registry.

Fig. 18. The specification of an interaction protocol.

25

Two other families of straight protocols are presented below. These families
define the connection of two synchronous interactions with two parameters; in
the first protocol, the interaction involves a return value. The first interaction
protocol establishes that the values returned by the synchronous interaction are
the same, while the second protocol synchronises the two operations without any
conversion of data.

Interaction protocols are first-class objects that can be (re)used to assign
properties to wires, which reflect constraints on the underlying run-time en-
vironment. These may concern data transmission, synchronous/asynchronous
connectivity, distribution, and other non-functional properties such as security.
In such cases, the specifications are not as simple as those of straight protocols.

Connectors After having chosen the protocols that coordinate the interactions
between two parties, we use them as the ‘glue’ (in the sense of [48]) of the con-
nectors that label the wires that link the corresponding parties. In a connector,
the interaction protocol is bound to the parties via ‘attachments’: these are map-
pings from the roles to the signatures of the parties identifying which interactions
of the parties perform which roles in the protocol. The use of attachments al-
lows us to separate the definition of the interaction protocols from their use in
the wires, which promotes reuse: typically, one defines a connector by choosing
from a repository of (types of) protocols that have proved to be useful in other
situations.

Summarising, connectors are triples 〈µA, P, µB〉 where:

– P is an interaction protocol. We use roleAP and roleBP to designate its
roles and glueP for the role.

– µA and µB are attachments that connect the roles of the protocol to the sig-
natures of the entities (business roles, business protocols or layer protocols)
being interconnected.

Fig. 19. Another two specifications of interaction protocols.

26

For instance, both Straight.A(prefdata)R(setids) and Straight.T(loandata, loan-
contract) are used in the wire ME to connect different interactions between
MortgageAgent and Registry as depicted in Figure 20.

Each row describes one connector. The first two columns define the attach-
ment between roleA of the interaction protocol (specified in the middle column)
and the signature of MortgageAgent. In the same way, the last two columns de-
fine the attachment between roleB of the interaction protocol and the signature
of Registry.

We use the same notation for specifying the wires that connect module com-
ponents to requires-interfaces. However, the specification of these wires is subject
to an additional correctness condition that restricts the signature of the requires-
interfaces to the interaction used in the corresponding wires. This is to ensure
that all the interactions of the services that are bound to the module through
the requires-interface have a corresponding co-party.

For instance, the only wire that connects LE in GetMortgage is ML (with
MA). Its specification is presented in Figure 21. The correctness condition is
satisfied because the signature of Lender is isomorphic to the sum of the interac-
tions of the roles connected to it, i.e. all the interactions of Lender are mapped
to a port.

The specification of the wires that connect module components to the provides-
interface of the module uses a slightly different syntax. This is because what we
need to declare is the set of interactions that the components make available to
the customer of the service, and the protocols through which the corresponding

Fig. 20. The specification of the connectors involved in wire ME.

Fig. 21. The specification of the connectors involved in wire ML.

27

events are transmitted. In this sense, we do not model the customer proper,
which in SRML is reflected by omitting the corresponding column of the table
that defines the wire.

For instance, the wire CM that interconnects Customer and MortgageAgent
in GetMortgage is specified as presented in Figure 22. In this case, each row
also describes one connector whose interaction protocol is specified in the second
column. The difference is that the entities that will be connected to the roleA of
their interaction protocols are unknown (these will belong to the services that will
bind to GetMortgage). As before, the last two columns define the attachment
between roleB of the interaction protocol and the signature of MortgageAgent.

5.2 Configuration policies

Whereas business roles, business protocols, layer protocols and interaction pro-
tocols deal with functional aspects of the behaviour of a (complex) service or
activity, configuration policies address aspects that relate to processes of dis-
covery, selection and instantiation of services. In SRML, we distinguish between
internal and external configuration policies. The former concern aspects related
with service instantiation such as the initialization of service components and
the triggering of the discovery of required services. The latter address aspects
related with the selection of partner services and negotiation of contracts.

Internal configuration policy The internal configuration policy of a service
module concerns the triggering of the discovery and selection process associated
with its requires-interfaces, and the instantiation of its component and wire
interfaces.

A trigger is usually associated with the occurrence of one or more events
and additional conditions on the state of the components in which the events
occur. For instance, GetMortgage defines that the lender has to be discov-
ered as soon as getProposal֠ is executed (by the workflow). There is a default
trigger condition: the publication of the initiation event of the first interaction
connected to the requires-interface. In our example, this is the case of the bank
and insurance external services.

Fig. 22. The specification of the connectors involved in wire CM.

28

In a module, each service component has an associated initialisation con-
dition, which is guaranteed to hold when the component is instantiated, and
a termination condition, which determines when the component stops execut-
ing and interacting with the rest of the components (in which case it can be
removed from the state configuration to which it belongs). Typically, both con-
ditions relate to the state variables of the component, but they can also include
the publication of given events. For instance, in the case of MortgageAgent, these
conditions are defined only in terms of the local variable s (see Figure 24).

Notice that these conditions can be underspecified, leaving room for further
refinement. For instance, we may force the termination of the component after
a certain date without specifying exactly when.

External policies The external policy concerns the way the module relates to
external parties: it declares the set of variables that can be used for negotiation
and establishing a service level agreement (SLA), and a set of constraints that
have to be taken into account during discovery and selection.

SLA variables include all the configuration variables declared in the spec-
ifications (except in the provides-interface). For instance, in GetMortgage,
MortgageAgent declares the configuration variable Charge. These variables are
local to the interfaces to which they are attached and instantiated when the cor-
responding component is created. Because constraints apply to the module as a
whole, we refer to these variables by preceding them with the name of the entity
to which they belong. Hence, in GetMortgage, we refer to MA.Charge.

SRML also provides a set of standard configuration variables — availability,
response time, message reliability, service identification, inter alia. Some of them,
e.g. response time, are associated with requires or provides-interfaces, and other,
e.g. message reliability, apply to the wires.

The standard configuration variables used in GetMortgage are:

– interaction , for every interaction of type r&s; its value is the length of time
the reply is valid after interaction is issued.

Fig. 23. Trigger conditions in GetMortgage.

Fig. 24. Initialization and termination conditions in GetMortgage.

29

– wire.Delay, for every wire; it defines the maximum delivery delay for events
sent over that wire.

– ServiceId, for every external-interface; it represents the identification of the
service that is bound to that interface (for instance, a URI).

Notice that although these variables are standard they need to be declared in
a module if the designer wants them to be involved in the service discovery nego-
tiation process. For instance, their declaration in GetMortgage is presented
in Figure 25.

The approach that we adopt in SRML for SLA negotiation is based on the
constraint satisfaction and optimization framework presented in [12] in which
constraint systems are defined in terms of c-semirings. As explained therein, this
framework is quite general and allows us to work with constraints of different
kinds — both hard and ‘soft’, the latter in many grades (fuzzy, weighted, and so
on). The c-semiring approach also supports selection based on a characterisation
of ‘best solution’ supported by multi-dimensional criteria, e.g. minimizing the
cost of a resource while maximizing the work it supports.

In this framework:

– A c-semiring is a semiring 〈A,+,×, 0, 1〉 in which A represents a space of
degrees of satisfaction, e.g. the set {0, 1} for yes/no or the interval [0, 1] for
intermediate degrees of satisfaction. The operations × and + are used for
composition and choice, respectively. Composition is commutative, choice
is idempotent and 1 is an absorbing element (i.e. there is no better choice
than 1). That is, a c-semiring is an algebra of degrees of satisfaction. Notice
that every c-semiring S induces a partial order≤S (of satisfaction) over A as
follows: a ≤S b iff a+ b = b. That is, b is better than a iff the choice between
a and b is b.

– A constraint system is a triple 〈S,D, V 〉 where S is a c-semiring, V is a
totally ordered set (of configuration variables), and D is a finite set (domain
of possible elements taken by the variables).

– A constraint consists of a selected subset con of variables and a mapping
def : D|con| → S that assigns a degree of satisfaction to each tuple of values
taken by the variables involved in the constraint.

The external configuration policy of a module involves a constraint system
based on a fixed c-semiring and a set of constraints over this constraint system.
Because we want to handle constraints that involve different degrees of satisfac-
tion, it makes sense that we work with the c-semiring 〈[0..1],max,min, 0, 1〉 of
soft fuzzy constraints [12]. In this c-semiring, the preference level is between 0
(worst) and 1 (best).

Fig. 25. Declaration of SLA variables in GetMortgage.

30

For instance, the external configuration policy of GetMortgage includes
the following constraints:

C1 : {MA.Charge, MA.getProposal },

def(c, t) =

{
1 if t ≤ 10 · c
1 + 2 · c− 0.2 · t if 10 · c < t ≤ 5 + 10 · c

That is, the more Charge is applied to the base price of the brokerage
service the longer is the interval during which the proposal is valid.

C2 : {LE.ServiceId}, def(s) =

{
1 if s ∈MA.lenders
0 otherwise

That is, the choice of the lender is constrained by the service identifier, which
must belong to the set MA.lenders (recall that, according to the orchestration
of MortgageAgent, this set contains the identification of the services provided by
trusted lenders that were found to be appropriate for the request at hand).

C3 : {MA.getProposal , LE.requestMortgage },

def(t1, t2) =

{
1 if t2 > t1 + CM.Delay +ML.Delay
0 otherwise

That is, the choice of the lender is also constrained by the period of validity
associated with its loan proposals. This period must be greater than the sum of
the validity period offered by the brokerage service to its clients and the possible
delays that may affect the transmission through the wires involved (notice that
CM.Delay and ML.Delay are not declared as SLA variables and, hence, they are
used like constants).

C4 : {LE.COST,LE.requestMortgage }, def(c, t) =

{
1
c + t

100 if c < 500
0 otherwise

That is, the cost to be paid by the brokerage service to the lender must be
less than 500, and the preference between lenders charging the same value will
take into account the validity period of the loan proposals.

The value of SLA variables is negotiated during service discovery/binding.
Details on negotiation of constraints and SLAs are further discussed in Section
6.3.

5.3 Module declaration

SRML makes available a textual language for defining modules, which involves
the specification of the module external interfaces, service components, wires

31

and policies, as discussed in the previous sections. The full definition of Get-
Mortgage can be seen in Appendix B.

In the case of a service module, we also have to map the interactions and SLA
variables of the provides-interface to corresponding interactions and variables of
the entities that provide the service. This is because the business protocol that
labels the provides-interface represents the service that is offered by the module
(behavioural properties and negotiable SLA variables), not the activity to which
the service will be bound. In the case of GetMortgage, only MA is connected
to CR, so the mapping is actually an identity. This is specified as presented in
Figure 26.

6 The Configuration-Management Model

6.1 Layered state configurations of global computers

As already mentioned, we take SOC to be about applications that can bind to
other applications discovered at run time in a universe of resources that is not
fixed a priori. As a result, there is no structure or ‘architecture’ that one can
fix at design-time for an application; rather, there is an underlying notion of
configuration of a global computer that keeps being redefined as applications
execute and get bound to other applications that offer required services. As
is often the case (e.g. [48]), by ‘configuration’ we mean a graph of components
(applications deployed over a given execution platform)linked through wires (e.g.
interconnections between components over a given communication network) in a
given state of execution. Typically, wires deal with the heterogeneity of partners
involved in the provision of the service, performing data (or, more, generally,
semantic) integration. See Figure 27 for an example, over which we will later
recognise three business activities (instances).

Summarising, a state configuration F consists of:

Fig. 26. Specification of the mapping between CR and MA in GetMortgage.

32

– A simple graph G, i.e. a set nodes(F) and a set edges(F); each edge e is asso-
ciated with a (unordered) pair n↔ m of nodes. We take nodes(F) ⊆COMP
(i.e. nodes are components) and edges(F) ⊆WIRE (i.e. edges are wires).

– A (configuration) state S as defined in Section 4.3.

Every state configuration 〈G,S〉 can change because either the state S or the
graph G changes. Changes to the state result from computations executed by
components and the coordination activities performed by the wires that connect
them as defined in 4.3. However, the essence of SOC as we see it it is not
captured at the level of state changes (which is basically a distributed view
of computation), but at the level of the changes that operate on configuration
graphs: in SOC, changes to the underlying graph of components and wires occur
at run time when a component performs an action that triggers the discovery
and binding of a service.

An important aspect of our model is the fact that we view SOC as providing
an architectural layer that interacts with two other layers (see Figure 28). This
can be noticed in Figure 27 where shadows are used for indicating that certain
components reside in different layers: AliceRegUI, BobEstateUI and CarolEsta-
teUI (three user interfaces) in the top layer, and MyRegistry (a database) in the
bottom layer. Layers are architectural abstractions that reflect different levels
of organisation and change, i.e. one looks at a configuration as a (flat) graph as
indicated above but, in order to understand how such configurations evolve, it
is useful to distinguish different layers.

In our model, the bottom layer consists of components that are persistent
as far as the service layer is concerned, i.e. those that in Section 3 we identified
as resource-actors. More precisely, when a new session of a service starts (e.g.
a mortgage broker starts putting together a proposal on behalf of a client),

CarolEstAgMyRegistry

AliceManag

RockLoans

BobMortAg

BCL

CarolMortAg

Law4All

CEL

BobEstateUI

AliceRegUI
ARM

BCR

AMR

CarolEstateUICEA

CCR CEM

BobEstAg

BEA

BAM

Fig. 27. The graph of a state configuration with 11 components and 10 wires.

33

the components of the bottom layer are assumed to be available so that, as
the service executes, they can be used as (shared) ‘servers’ — for instance the
registry, which shared by all sessions of the mortgage broker, or a currency
converter. In particular, the bottom layer can be used for making persistent the
effects of services as they execute.

The components that execute in the service layer are created when the ses-
sion of the corresponding service starts, i.e. as fresh instances that last only for
the duration of the session — for instance, the workflow that orchestrates the
mortgage-brokerage service for a particular client. In component-based devel-
opment (CBD) one often says that the bottom layer provides ‘services’ to the
layer above. As we see it in this paper, an important difference between CBD
and SOC is precisely in the way such services are procured, which in the case
of SOC involves identifying (possibly new) providers and negotiating terms and
conditions for each new instance of the activity, e.g. for each new user of a travel
agent. SOA middleware supports this service layer by providing the infrastruc-
ture for the discovery and negotiation processes to be executed without having
to be explicitly programmed as (part of) components.

The top layer is the one responsible for launching business activities in the
service layer. The user of a given activity — identified through a user-actor as
discussed in Section 3 — resides in the top layer; it can be an interface for
human-computer interaction, a software component, or an external system (e.g.
a control device equipped with sensors). When the user launches an activity, a
component is created in the service layer that starts executing a workflow that
may involve the orchestration of services that will be discovered and bound to
the workflow at run time.

6.2 Business activities and configurations

In our model, state configurations change as a result of the execution of busi-
ness processes. More precisely, changes to the configuration graph result from
the fact that the discovery of a service is triggered and, as a consequence, new
components are added and bound to existing ones (and, possibly, other compo-

SERVICE
layer

BOTTOM
layer

TOP layer

Fig. 28. A 3-layered architecture for configurations.

34

nents and wires disappear because they finished executing their computations).
The information about the triggers and the constraints that apply to service
discovery and binding are not coded in the components themselves: they are
properties of the ‘business activities’ that are active and determine how the
configuration evolves. Thus, in order to capture the dynamic aspects of SOC,
we need to look beyond the information available in a state. In our approach,
we achieve this by making configurations ‘business reflective’, i.e. by labelling
the sub-configurations that correspond to instances of business activities by the
corresponding activity module.

For instance, we should be able to recognise an activity in Figure 27 whose
sub-configuration is as depicted in Figure 29. Intuitively, it corresponds to an
instance of UpdateRegistry. In order to formalise this notion of typed sub-
configuration, we start by providing a formal definition of activity modules. We
denote by BROL the set of business roles (see 5.1.2), by BUSP the set of busi-
ness protocols (see 5.1.3), by LAYP the set of layer protocols (see 5.1.4), and
by CNCT the set of connectors (see 5.1).

An activity module M consist of:

– A graph graph(M).
– A distinguished subset of nodes requires(M)⊆nodes(M).
– A distinguished subset of nodes uses(M)⊆nodes(M).
– A node serves(M)∈ nodes(M) distinct from requires(M) and uses(M).
– A labelling function labelM such that

• labelM (n) ∈BROL if n ∈components(M), where by components(M) we
denote the set of nodes(M) that are not serves(M) nor in requires(M) or
uses(M).

• labelM (n) ∈BUSP if n ∈requires(M)
• labelM (n) ∈LAYP if n ∈serves(M)∪uses(M)
• labelM (e : n↔ m) ∈CNCT.

– An internal configuration policy.
– An external configuration policy.

We denote by body(M) the (full) sub-graph of graph(M) that forgets the
nodes in requires(M) and the edges that connect them to the rest of the graph.

MyRegistry

AliceManag

AliceRegUI
ARM

AMR

Fig. 29. The sub-configuration corresponding to an instance of UpdateRegistry.

35

We can now formalise the typing of state configurations with activity modules
that we discussed around Figure 29, which accounts for the coarser business
dimension that is overlaid by services on global computers. That is, we define
what corresponds to a state configuration of a service overlay computer, which
we call a business configuration. We consider a space A of business activities to
be given, which can be seen to consist of reference numbers (or some other kind
of identifier) such as the ones that organisations automatically assign when a
service request arrives.

A business configuration consists of:

– A state configuration F .

– A partial mapping B that assigns an activity module B(a) to each activity
a ∈ A — the workflow being executed by a in F . We say that the activities
in the domain of this mapping are those that are active in that state.

– A mapping C that assigns an homomorphism C(a) of graphs body(B(a))→ F
to every activity a ∈ F that is active in F . We denote by F(a) the image of
C(a) — the sub-configuration of F that corresponds to the activity a.

A homomorphism of graphs is just a mapping of nodes to nodes and edges to
edges that preserves the end-points of the edges. Therefore, the homomorphism
C of a business configuration 〈F ,B, C〉 types the nodes (components) of F(a)
with business roles or layer protocols — i.e. C(a)(n) : labelB(a)(n) for every node
n — and the edges (wires) with connectors — i.e. C(a)(e) : labelB(a)(e) for every
edge e of the body of the activity. In other words, the homomorphism binds
the components and wires of the state configuration to the business elements
(interfaces labelled with business roles, layer protocols and connectors) that they
fulfil in the activity.

In the example discussed above, we have an activity — that we call Alice —
such that B(Alice) is UpdateRegistry (as in Figure 3), F(Alice) is the sub-
configuration in Figure 29, and C maps RM to AliceRegUI, MC to AliceManag,
RE to MyRegistry, MR to AMR, and RM to ARM.

The fact that the homomorphism is defined over the body of the activity
module means that business protocols are not used for typing components of
the state configuration. Indeed, as discussed above, the purpose of the requires-
interfaces is for identifying dependencies that the activity has, in that state,
on external services. In particular, this makes requires-interfaces different from
uses-interfaces as the latter are indeed mapped through the homomorphism to
a component of the state configuration.

In a sense, the homomorphism makes state configurations reflective in the
sense of [27] as it adds meta (business) information to the state configuration.
This information is used for deciding how the configuration will evolve (namely,
how it will react to events that trigger the discovery process). Indeed, reflection
has been advocated as a means of making systems adaptable through reconfig-
uration, which is similar to the mechanisms through which activities evolve in
our model.

36

6.3 Run-time discovery and binding

In order to illustrate how a business configuration evolves through service dis-
covery and binding, we are going to consider another business activity type that
supports the purchase of a house. The corresponding module is depicted in Fig-
ure 30.

That is, the orchestration of the purchase of a house is performed by a com-
ponent EA of type (business role) EstateAgent, which may need to discover and
bind to a mortgage dealer MO and a lawyer LA.

Consider the configuration depicted in Figure 31, and the business configu-
ration that consists of Alice (as defined in Section 6.2) and of the activity Bob
typed by HouseBuying, which is mapped to the configuration by the homo-
morphism that associates GH with BobEstateUI, EA with BobEstateAG and HE
with BEA. Assume that, in the current state, intMO trigger holds, i.e. that
the execution of the workflow associated with EA requires the discovery of a
mortgage dealer. Let us consider what is necessary for GetMortgage to be
selected and bound to HouseBuying as a result of the trigger (see Figure 32).
In our setting, this process involves three steps, outlined as follows:

HOUSEBUYING
SLA_GH

EA:
Estate
Agent

MO:
Mortgage

intMO

EM

GH:
House

Application

HE
intEA

LA:
Lawyer

intLA

EL

Fig. 30. The HouseBuying activity module.

MyRegistry

AliceManag

BobEstateUI

AliceRegUI
ARM

AMR

BobEstAg

Fig. 31. A configuration.

37

– Discovery. For GetMortgage to be discovered, it is necessary that the
properties of its provides-interface Customer entail the properties of the
requires-interface Mortgage, and that the properties of the interaction pro-
tocol of CC entail those of EM.

– Ranking. If it is discovered, GetMortgage is ranked among all services
that are discovered by calculating the most favourable service-level agree-
ment that can be achieved — the contract that will be established between
the two parties if GetMortgage is selected. This calculation uses a no-
tion of satisfaction that takes into account the preferences of the activity
HouseBuying and the service GetMortgage.

– Selection. Finally, GetMortgage can be selected if it is one of the services
that maximises the level of satisfaction offered by the corresponding contract.

These steps are formalised in [33]. If GetMortgage is selected then it is
unified with HouseBuying, giving rise to another activity module. As depicted
in Figure 33, the resulting activity module is obtained by replacing the requires-
interface and corresponding wire of HouseBuying by those that connect the
provides-interface of GetMortgage to its body.

At the level of the configuration, we add the new instances of the compo-
nents of GetMortgage and corresponding wires, making sure that instances
of the uses-interfaces are components of the bottom layer (already present in
the configuration). This can be witnessed in Figure 34 where the instance of RE
is the component MyRegistry, which is shared with other activities. Notice that
the type of the activity Bob is now the activity module in Figure 34, and that
the homomorphism now maps MA to BobMortBR, RE to MyRegistry, EM to
BAM and BE to BCR. It is in this sense that the activity is reconfigured as new
services are discovered and bound to its requires-interfaces. See [33] for a full
formalisation of this process of reconfiguration.

HOUSEBUYING
SLA_GH

EA:
Estate
Agent

MO:
Mortgage

intMO

EM

GH:
House

Application

HE
intEA

LA:
Lawyer

intLA

EL

GETMORTGAGE

SLA_GM

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CM CR:
 Customer

ME

ML

MB

MI

intMA⊥

ρ

Compatibility
Consistency

Fig. 32. The elements involved in unification.

38

7 Checking the Correctness of Service Modules

Service modules are considered to be ‘correct’ when the properties offered in
their provides-interface are ensured by the orchestration of their components
and the properties specified in their requires-interfaces. Therefore, in order to
prove the correctness of GetMortgage, we would need to check that the prop-
erties offered through the business protocol Customer — e.g., committing to the
proposal made by MA ensures that a confirmation message will be sent conveying
the loan contract — are effectively established by the orchestration performed

HOUSEBUYINGMORTGAGE

LA:
Lawyer

SLA_HBM

EA:
EstateAgent

intLA

EL

GH:
House

Application

HE

intEA

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

ME

ML

MB

MI

intMA

CM

Fig. 33. The result of unification.

MyRegistry

AliceManag

BobMortAg

BobEstateUI

AliceRegUI
ARM

BCR

AMR

BobEstAg BAM

Fig. 34. The result of the binding.

39

by MA on the assumption that the properties required of LE, BA and IN are
satisfied.

In this section, we discuss a model-checking approach that we have developed
for analysing the properties that can emerge from the orchestration of service
behaviour in general, and the correctness of service modules in particular. This
approach is based on the model-checker UMC [40] developed at CNR-ISTI. UMC
works over UML state machines and UCTL [10], a temporal logic that is inter-
preted over transition systems in which both states and transitions are labelled,
thus making it easier to express properties of stateful interactions as required by
SRML.

7.1 The UCTL Semantics of Business Protocols

UCTL is a temporal logic that includes both the branching-time action-based
logic ACTL [22] and the branching-time state-based logic CTL [26]. The models
of UCTL are doubly labelled transition systems (L2TS for short) which are
transition systems whose states are labelled by atomic propositions and whose
transitions are labelled by sets of actions [23]. The syntax of UCTL formulas is
defined as follows:

φ ::= true | p | φ ∧ φ′ | ¬φ | Eπ | Aπ
π ::=Xχφ | φ χW φ′ | φ χUχ′ φ′ | φ χW φ′ | φ χWχ′ φ′

where p ranges over state predicates, χ over actions, φ over state formulae, and
π over path formulae. E and A are “exists” and “for all” path quantifiers respec-
tively. The next operator X says that in the next state of the path, reached by
an action satisfying χ, the formula φ holds. The intuitive meaning of the doubly-
indexed until operator U on a path is that φ′ holds at some future state of the
path reached by a last action satisfying χ′, while φ has to hold from the current
state until that state is reached and all the actions executed in the meanwhile
along the path either satisfy χ or τ . Finally, the weak-until operator W holds on
a path either if the corresponding strong-until operator holds or if for all states
of the path the formula φ holds and all the actions of the path either satisfy χ
or τ . It is straightforward to derive the well-known temporal logical operators
EF (“possibly”), AF (“eventually”) and AG (“always”) and the diamond and
box modalities <> (“possibly”) and [] (“necessarily”). In particular, < χ > φ
stands for EXχ φ, meaning that there is transition that satisfies χ which leads
to a state that satisfies φ; and [χ]φ stands for ¬ < χ > ¬φ, meaning that every
transition that satisfies χ leads to a state that satisfies φ.

To provide the semantics of business protocols in terms of UCTL formulas,
we have to consider the declared set of typed interactions and the set of con-
straints that correlate the events of those interactions. Recall that the types that
are associated with each interaction define not only the set of events the external
service can engage in as part of that interaction, but also the conversational pro-
tocol that the service follows to engage in those events. We will first address the
encoding of the patterns that are used to specify behaviour constraints and then

40

we will address the encoding of the conversational protocol that is associated
with the interaction types.

The semantics of the behavioural patterns used in business protocols (pre-
sented in Section 5.1) is defined in terms of UCTL formulas as follows:

initiallyEnabled e A
true{¬e¿}W{e?}true

s after a AG[a]s

a enables e
AG[a]¬EF < e¿ > true

 ∧A[true{¬e?}W{a}true


a ensures e
AG[a]AF [e!]true

 ∧A[true{¬e!}W{a}true]


This encoding is justified by the fact that SRML models correspond to L2TSs
in which the actions that label the transitions consist of the several stages of event
propagation (publish, deliver, execute or discard), and the state predicates are
either pledges (i.e. the properties that ensured by positive replies) or capture the
history of events (this is because UCTL does not have past operators).

As already explained, two-way interactions are typed as s&r (send and re-
ceive) or r&s (receive and send) to define that the service being specified engages
in the interaction as the requester or as the supplier, respectively. Each of these
two roles, requester and supplier, has a set of properties associated with it. The
following table presents the UCTL encoding of some of these properties.

s&r — Requester
The reply-event becomes enabled by the
publication of the initiation-event and not before. i֠ ! enables i� ?
r&s — Supplier
The reply will be published after and only
after the initiation-event was executed i֠ ? ensures i� !
The revoke-event cannot be executed before the
execution of the commit-event. A[true{¬i>?}W{iX?}true]

7.2 From SRML modules to UML state machines

In order to be able to model-check properties of service behaviour in the context
of SRML in general, and the correctness of service modules in particular, we
restrict ourselves to those modules in which state machines are used for modelling
the internal components, the persistent components, the protocols performed by
the wires, and the required behaviour of external services. This is because UMC
takes as input a set of communicating state machines with which it associates a
L2TS that represents the possible computations of that system. Model-checking
is then performed over this L2TS.

As discussed in Section 5, using UML state machines for defining workflows
is quite standard. However, the cases of wires and requires-interfaces are not
as simple. In the case of wires, we need to ensure that event propagation and
related phenomena occur according to the rules of the computational model. In
the case of requires-interfaces, we need to discuss how the patterns defined in
Subsection 5.1 can be represented with state machines.

41

Encoding requires interfaces In SRML, requires-interfaces are specified through
business protocols with the patterns of temporal logic that we discussed in Sub-
section 5.1. The proposed encoding associates a state machine with each requires-
interface that corresponds to a canonical model of the required behaviour. The
strategy of the encoding entails creating a concurrent region for each of the inter-
actions that the external service is required to be involved in — the interaction-
regions — and a concurrent region for each of the behaviour constraints – the
constraint-regions — except for the constraints defined with the pattern initial-
lyEnabled e: as discussed further ahead, these are modelled by the instantiation
of a state attribute.

The role of each of the interaction regions is to guarantee that the conver-
sational protocol that is associated with the type of the interaction is respected
as discussed before. Events of a given interaction are published, executed and
discarded exclusively by the interaction-region that models it. The role of the
constraint-regions is to flag, through the use of special state attributes, when
events become enabled and when events should be published — the evolution of
the interaction-regions, and thus the actual execution, discard and publication
of events, is guarded by the value of those flags. Constraint-regions cooperate
with interaction-regions to guarantee the correlation of events expressed by the
behaviour constraints.

We illustrate this methodology by presenting the encoding of the requires-
interface Lender in Figure 35. Lender is involved in the two interactions re-
questMortgage and requestSignOut, which are encoded by interaction-regions A
and B, respectively; these two interactions are correlated by two behaviour con-
straints, the second of which originates the constraint-region X. The constraint
initiallyEnabled requestMortgage֠ ? does not originate a region in the state
machine; instead it determines that the flag requestMortgage֠ enabled is initially
set to true and therefore when the event requestMortgage֠ is processed it will be
executed (and not discarded) by interaction-region A. When requestMortgage֠

is executed, interaction-region A evolves from state a1 to state a2 by publish-
ing a positive reply or alternatively from a1 to the final state by publishing a
negative reply. If the commit-event of requestMortgage is processed in state a2,
it will be executed and therefore the requestMortgageX executed will be set to
true. It is at this point that the constraint region X comes into play — this
region reacts to the change of value of requestMortgageX executed by setting
requestSignOut֠ enabled to true. After this happens, region B will be ready to
execute the request-event of requestSignOut and therefore this two-way interac-
tion can be initiated.

Following our methodology, each interaction declaration and each behaviour
constraint encodes part of the final state machine in a compositional way. Asso-
ciated with each interaction type, there is a particular statechart structure that
encodes it. Each of the patterns of behaviour constraints is also associated with
a particular statechart structure. A complete mapping from interactions types
and behaviour patterns to their associated statechart structure can be found in
[4]. Naturally, the encoding we propose for specifications of requires-interfaces

42

[requestMortgage_executed] /
requestSignOut_enabled := true

X

b1

b2

requestSignOut /
requestSignOut_executed := true

b3

requestSignOut /
requestSignOut_executed := true

B requestSignOut
[requestSignOut_enabled] /
ML2.requestSignOut(false)
requestSignOut_Reply := false
requestSignOut_sent := true

requestSignOut
[requestSignOut_enabled] /
ML2.requestSignOut(true)
requestSignOut_Reply := true
requestSignOut_sent := true

requestSignOut
[requestSignOut_enabled] /
requestSignOut_executed := true

a1

a2

requestMortgage  /
requestMortgage _executed := true

a3

requestMortgage  /
requestMortgage _executed := true

A requestMortgage 
[requestMortgage _enabled] /
ML1.requestMortgage (false)
requestMortgage _Reply := false
requestMortgage _sent := true

requestMortgage 
[requestMortgage _enabled] /
ML1.requestMortgage (true)
requestMortgage _Reply := true
requestMortgage _sent := true

requestMortgage 
[requestMortgage _enabled] /
requestMortgage _executed := true

Fig. 35. The UML statechart encoding of the requires-interface Lender. A and B are
the interaction-regions and X is the constraint-regions.

43

is defined in such a way that the transition system that is generated for a ser-
vice module satisfies the UCTL formulas that are associated with each of the
requires-interfaces of that module.

Encoding wires In SRML wires are responsible for the coordination of the
interactions declared locally for each party of the module. For each wire, there
is a connector that defines an interaction protocol with two roles and binds the
interactions declared in the roles with those of the parties at the two ends of the
wire [5]. With our methodology for encoding wires with UML state machines,
every connector defines a state machine for each interaction. This state machine
is responsible for transmitting the events of that interaction from the sending
party to the receiving co-party. Parties publish events by signaling them in the
state machine that corresponds to the appropriate connector; this state machine
in turn guarantees that these events are delivered by signaling them in the state
machine that is associated with the co-party. The relation between parameter
values that is specified by the interaction protocol of the connector is ensured
operationally by the state machine that encodes that connector – data can be
transformed before being forwarded. The statechart contains a single state and
as many loops as the number of events that the connector has to forward.

In GetMortgage, two-way interactions are coordinated by straight interac-
tion protocols that bind the names and parameters of s&r and r&s interaction
declarations directly (i.e. events and parameter values are the same from the
point of view of the two parties connected). Figure 36 shows the state machine
that encodes this connector for the single interaction that takes place between
MA and LE — there is only one persistent state in which the machine waits to
receive events and forward them with the same parameter values.

askProposal(a,b) /
LE.requestMortgagel(a,b)

askProposal /
LE.requestMortgage

askProposal /
LE.requestMortgage

askProposal /
LE.requestMortgage

requestMortgage(a,b,c,d) /
MA.askProposal(a,b,c,d)

Fig. 36. The UML encoding of the connector that coordinates the single, two-way,
interaction between MA and LE which is named askProposal and requestMortgage
from the point of view of each party respectively.

44

7.3 Model-checking service modules at work

As mentioned before, our approach to check the correctness of service modules
is based on the model-checker UMC [40]. UMC is an on-the-fly model-checker
developed for efficient verification of UCTL formulae over a set of communi-
cating UML state machines [43]. A UMC model description consists of a set
of UML class definitions and a static set of object instantiations – the actual
state machines that form the system under analysis. A UMC model must rep-
resent an input-closed system, i.e. the input sources must be modelled as active
objects interacting with the rest of the system. Each state machine has a pool
that buffers the set of signals that have been received from other machines until
they are processed by that machine. According to its class definition, each state
machine has at any given time a value for each of its attributes and a set of
currently active sub states as specified by the statechart diagram of the class.

In order to illustrate our model-checking approach we will discuss how to
model-check the module GetMortgage. First, we have encoded each of its
external-required interfaces and each of its connectors using the methodology
described in the previous section. Adding the two components that orchestrate
the system, we ended up with a set of fourteen communicating UML state
machines. Because every input source of a UMC model must also be modelled
via an active object, we had to define a machine that initiates the interactions
advertised in the provides-interface Customer, thus modelling a generic client
of the service. Using this system as input to the UMC model-checker, we were
able to verify that the doubly labelled transition system that is generated does
satisfy the properties associated with the provides-interface Customer, shown in
Figure 16. As discussed before, these consists of the properties associated with
the types of the declared interactions and those that derive from the patterns of
behaviour.

8 Analysing Timing Properties of Complex Services

In this Section, we show how SRML can be extended in order to model the
delays involved in the business process through which a service is provided and
how time-related properties of service-oriented models can be analysed over such
models. For instance, we have in mind the ability to certify that the mortgage-
brokerage service satisfies properties of the form “In at least 80% of the cases, a
reply to a request for a mortgage proposal will be sent within 7 seconds”. Prop-
erties of this kind are extremely important in a number of application domains
and are usually part of the service level agreements (SLAs) that are negotiated
between clients and providers. This approach draws from the work reported
in [54].

8.1 Timing issues in SRML models

Given two events e1 and e2, we denote by Delay(e1, e2) the time that sepa-
rates their occurrences, e.g. Delay(getProposal֠ , getProposal�) in the exam-
ple above. Because we wish to adopt the PEPA analysis tools [52,21] (discussed in

45

another chapter of this book), we assume that such delays follow an exponential
distribution of the form FDelay(e1,e2)(t) = 1−e−rt. In practical applications, it is
rarely the case that it is possible to obtain a complete response-time distribution
of all services in the problem under study. It is far more likely that one will only
know the average response time. In this setting, it is indeed correct to capture
the inherent stochasticity in the system through a exponential distribution. The
exponential distribution requires only a single parameter, the average response
time. Other distributions would require knowledge of higher moments and other
parameters which we do not have. We take care not to require too many param-
eters because finding each one accurately may require careful measurement or
estimation. We apply our modelling only in settings where the average response
time is a meaningful quantity to use. For example, we do not model systems that
have a substantial component requiring a response from a single human partic-
ipant because the great variance in human response time makes knowledge of
the average response time alone insignificant for analysis purposes. This setting
connects us to the rich theory of stochastic process including continuous-time
Markov chains (CTMC), and a wealth of efficient numerical procedures for their
analysis.

In our setting, the rate r is associated with the entity that processes and pub-
lishes the events, and used as a modelling primitive in the proposed extension of
SRML. Event-based selection of continuations in SRML becomes probabilistic
choice in PEPA. We estimate the probability of the relative outcomes and use
the resulting probabilities to weight the rates in the PEPA model to ensure the
correct distribution across the continuations. In this way all number distribu-
tions remain exponential and thus we can achieve probabilistic branching while
remaining in the continuous-time Markovian realm.

We report below a number of delays that, according to the computation and
coordination model discussed in Section 4.3, can affect service execution. The
rates can be negotiated as SLAs with service providers in the constraint systems
mentioned in Section 5.2.

Delays in components. Because they may be busy, components store the
events they receive in a buffer where they wait until they are processed, at which
point they are either executed or discarded. Two kinds of rates are involved in
this process:

processingRate. This rate represents the time taken by the component to
remove an event from the buffer. Different components may have different
processing rates but all events are treated equally by the same component.

executionRate. This represents the time taken by the component to perform
the transition triggered by the event, i.e. making changes to the state and
publishing events. We assume that discarding an event does not take time.
Each transition declared in a business role has its own execution rate, which
should be chosen taking into account the specific effects of that transition.

Delays of requires-interfaces. As already mentioned, requires-interfaces rep-
resent parties that have to be discovered at run time when the corresponding
trigger becomes true. Two kinds of rates are involved in this process:

46

compositionRate. This rate applies to the run-time discovery, selection and
binding processes as performed by the middleware, i.e. (1) the time to con-
nect to a broker, (2) the time for matchmaking, ranking and selection, and
(3) the time to bind the selected service. We chose to let different requires-
interfaces have different composition rates in order to reflect the fact that
different brokers may be involved, depending on the nature of the required
external services.

responseRate. These are rates that apply to the responses that the business
protocol requires of the external service through statements of the form
e1 ∗ ensures e2!. More specifically, we consider a rate responseRate(e1, e2)
for each such pair of events, which include responseRate(a֠ , a�) for every
interaction a of type r&s declared in the business protocol.

Delays in wires. Each wire of a module has an associated transfer rate. As
mentioned in Section 2, we are considering only interaction protocols that affect
a linear transmission from one party to its co-party, and do not involve complex
data transformation.

Delays in synchronous communication and resource contention. The
interface of a resource consists of a number of synchronous interactions . We
define a synchronisation rate for each such interactions and associate it with the
events that resolve synchronisation requests by replying to a query or executing
an operation.

In summary, we extend every module M with a time policy P that consists
of several collections of rates. Each rate is a term of type R+ ∪ {>}, where > is
the passive rate (i.e., the event with a passive rate occurs only in collaboration
with another event, when this second event is ready):

– For every requires-interface n ∈ requires(M)

• compositionRate(n)

• responseRate(n)(e1, e2) for every statement (e1 ∗ ensures e2!)

– For every w ∈ edges(M), transferRate(w).

– For every n ∈ components(M)

• processingRate(n)

• executionRate(n, P) for every transition P ∈ trans(labelM (n))

– For every n ∈ components(M) ∪ serves(M) ∪ uses(M) and interaction i of
type rpl and prf, synchronisationRate(n)(i).

The sequence diagram in Figure 37 illustrates how the response time as-
sociated with getProposal֠ depends on the delays associated with the rates
discussed in this section. The value of the rates that apply to components and
wires to other components or uses-interfaces are fixed when the module is instan-
tiated, i.e. when the interfaces are bound to components or network connections.
The rates that involve requires-interfaces are fixed at run time, subject to SLAs.

47

CMCR MA ML LE

getProposal

getProposal

askProposal

askProposal

askProposal

askProposal

getProposal

getProposal

3
4

5

4

6

Delay(getProposal,getProposal)

transferRate(CM)
processingRate(MA)
executionRate(MA)(GetClientRequest) processingRate(MA)

executionRate(MA)(GetLenderProposal)

transferRate(ML)
compositionRate(LE)
responseRate(LE)(askProposal,askProposal)

1

2

2

1

2

3

4

5

6

Fig. 37. Cascade of delays in a fragment of GetMortgage

8.2 Representing SRML timing issues as stochastic processes

We can now explain how a SRML module can be coded as a stochastic process
so that the timing properties that derive from the timing policy of the mod-
ule can be analysed using PEPA. This encoding involves several steps. First,
the structure of the SRML module is decomposed into a PEPA configuration
consisting of a number of PEPA terms. Each PEPA term corresponds to either
a node or a wire of the original SRML model. In this way we can easily map
the results of the quantitative analysis back to the original SRML specification.
Second, the behavioural interface of each entity of the SRML model is encoded
into a PEPA term, enabling to analyze the delays due to each single component.
We use 〈〈m〉〉 = t to express that the encoding of the SRML element m is the
PEPA term t.

Encoding the signature. In SRML the signatures (sets of interactions) associ-
ated with specifications of different entities involved in a module are not assumed
to be mutually disjoint. This is because we want to promote reuse, which is also
why interconnections are established explicitly through wires. Therefore, be-
cause in PEPA interconnections are based on shared names, the first step of our
encoding consists in renaming all the interactions to guarantee that the inter-
connections of the SRML model are properly represented by the scopes of action
names in PEPA. We do so by defining, for every node n, its encoding signature
esignM (n) obtained by prefixing each interaction name in sign(labelM (n)) with
n.

The overall encoding 〈〈M〉〉 of a module M is a cooperation process that
includes one sequential component for each node of M , one sequential component

48

start

 MAaskProposal / rate(executionRate(MA)(GetClientRequest))

<<StateNode>>
INITIAL

<< StateNode>>
WAIT_PROPOSAL

<< StateNode>>
WAIT_DECISION

MAaskProposal / rate(processingRate(MA))

MAgetProposal / rate((1-p)(executionRate(MA)(GetLenderProposal)))

<<TransitionNode>>
GetClientRequest

MAgetProposal / rate(processingRate(MA))

<<TransitionNode>>
GetLenderProposal

MAgetProposal / rate(p(executionRate(MA)(GetLenderProposal))) <<StateNode>>
FINAL

end

p (resp. 1-p) is the estimated probability of
receiving negative (resp. positive) reply to

getProposal. By negative (resp. positive) reply
 we mean getProposal.Reply=false (resp. true).

...

Fig. 38. Statechart for MA with the notation for performance analysis with PEPA

for each edge of M , and one additional sequential component for each requires-
interface:

〈〈M〉〉 =
n

n∈nodes(M)

〈〈n〉〉 ��
L1

n

w∈edges(M)

〈〈w〉〉 ��
L2

n

n∈requires(M)

〈〈trigger n〉〉

The cooperation set L1 includes all the interaction events associated with all the
interaction names of all the nodes (note that the synchronisation event associated
with synchronous interaction types has the same name as the interaction):

L1 =
⋃

n∈nodes(M)

⋃
i∈esignM (n)

{i֠ i� , iX, i8, i� , i}

The cooperation set L2 includes all the interaction events that act as triggers
for requires-interfaces and, for each requires interface n, an event that controls
the discovery process associated with n.

L2 = {m e : trigger(n) = (m, e), n ∈ requires(M)}∪{discovery n : n ∈ requires(M)}

Let n be a requires-interface with trigger(n) = (m, e).

〈〈trigger n〉〉 = P where P = (m e,>).(discovery n, compositionRate(n)).P

This term models the delay due to the discovery process that occurs when the
trigger becomes true. As shown in Section 8.2, a wire connecting a node to a
requires-interface n must wait for the activity discovery n before enacting any
interaction with n.

49

Encoding components. The PEPA term corresponding to a component-
interface n is obtained in two steps: (1) we refine the statechart that defines
the business role associated with n, (2) we apply the translation provided by the
PEPA toolset [19] to obtain the corresponding PEPA term.

The refinement of the statechart is performed in three substeps. First, the
events that occur in the SRML statechart are translated using esignM (n) as
defined in the previous paragraph. That is, given an asynchronous interaction a,
〈〈a֠ 〉〉 = n a֠ , 〈〈a� 〉〉 = n a� , 〈〈aX〉〉 = n aX, 〈〈a8〉〉 = n a8 and 〈〈a� 〉〉 = n a� .
For every synchronous interaction i, 〈〈i〉〉 = n i. The second step assigns a prob-
ability to the branches of the statechart that are associated with each SRML
transition. More precisely, given a transition P with n branches Pci , we associate
a probability pci with each branch such that

∑
i=1..n pci = 1. The designer can

assign these probabilities taking into account specific knowledge of the appli-
cation domain, or decide for an equal probability 1/n, or yet experiment with
different values to analyse different possible behaviours. The third step consists
in adding the rates. For every SRML transition P of a component n, the incom-
ing arrow is assigned the rate processingRate(n) and each branch Pci is assigned
the rate pci ∗ executionRate(n, P). Figure 38 illustrates the statechart diagram
for the orchestration of MA, annotated with information on executionRate for
each transition.

Wires and interaction protocols. In order to encode a SRML edge w : n↔
m, we consider first the case when none of the nodes involved is a requires-
interface. In this case, all we have to do is to model the transfer of the events
from one component to the other. As discussed in Section 2, every wire w defines
a set of pairs of interactions pairs(w). We define

〈〈w〉〉 =
n

〈a,b〉∈pairs(w)

〈〈〈a, b〉〉〉

The encoding of the pairs of interactions depends on their types. Consider the
case of 〈s&r , r&s 〉. In this case, the wire forwards the initiation, commit, cancel
and revoke events from n to m and the reply back from m to n. We assign the
delay r = transferRate(w) to the second leg (delivery to the target):

〈〈〈a, b〉〉〉 = Q

Q = (n a֠ ,>).(m b֠ , r).Q + (n aX,>).(m bX, r).Q + (n a8,>).(m b8, r).Q

+(n a� ,>).(m b� , r).Q + (m b� ,>).(n a� , r).Q

The encoding that applies to the other types of interaction is defined in a similar
way. In the case of a one-way asynchronous protocol 〈snd , rcv 〉 we have:

〈〈〈a, b〉〉〉 = Q where Q = (n a֠ ,>).(m b֠ , transferRate(w)).Q

In the case of a synchronous interaction 〈ask , rpl 〉 we have:

〈〈〈a, b〉〉〉 = Q where Q = (n a,>).(m b֠ , synchronisationRate(m, b)).Q

50

The case of 〈tll , prf 〉 is identical. In the case of an edge connecting a requires-
interface n, the encoding is:

〈〈w〉〉 = (discovery n,>).
n

〈a,b〉∈pairs(w)

〈〈〈a, b〉〉〉.

External-interfaces. The encoding of requires-interfaces n is defined in terms
of two processes that cooperate over the set L including all the events in esignM (n)
and, for each e ∈ esignM (n), the actions enables e and disables e. One of the
processes (represented by the term Sn) encodes the statements that define the
required behaviour of the external party. The other process (represented by the
term En) controls the enabling and disabling of the interaction events in which
the external party can be involved. That is,

〈〈n〉〉 = Sn ��
L

En.

Let us consider each process in turn, starting with En. We need to control the
incoming events, i.e. those received by the external party, all of which have a
passive rate. The outgoing events are controlled by the components that receive
them through the use of guards as discussed before.

En =
n

type(i)
=rcv

E(n i֠)
n

type(i)

=s&r

E(n i�)
n

type(i)

=r&s

E(n i֠) | E(n iX) | E(n i8) | E(n i�)

E(e) = (enables e,>).E′(e) where E′(e) = (e,>).E(e) + (disables e,>).E(e)

That is, E(e) synchronises with the enabling of the event, after which it either
executes it or disables it again. Consider now the term Sn. We have seen in Sec-
tion 2.1 that the business protocol associated with a requires-interface n defines
a set of statements statementsM (n). We distinguish three kinds of statements:
those that use the connective initiallyEnabled – the set of which we denote by
A1; those that use enablesUntil – the set of which we denote by A2; and those
of the form ensures – the set of which we denote by A3. Each kind of statement
is encoded separately, leading to:

Sn =
n

s1∈A1

〈〈s1〉〉
n

s2∈A2

〈〈s2〉〉
n

s3∈A3

〈〈s3〉〉 where 〈〈initiallyEnabled e1?〉〉 = enables 〈〈e1〉〉

The enabling action for e1 has no associated rate (i.e., it is an immediate
action, as defined in [9]), because the activity does not involve any of the delays
of a SRML module we want to analyze.

〈〈e1 ∗ enables e2? until e3∗〉〉 = (〈〈e1〉〉,>).P1 + (〈〈e3〉〉,>).P2

P1 = enables 〈〈e2〉〉.(〈〈e3〉〉,>).disables 〈〈e2〉〉.〈〈e1 ∗ enables e2? until e3∗〉〉
P2 = disables 〈〈e2〉〉.〈〈e1 ∗ enables e2? until e3∗〉〉

We distinguish between the situation in which e3 occurs first, disabling e2, or e1
occurs first, enabling e2 until e3 occurs. The enabling/disabling are immediate
actions.

〈〈e1 ∗ ensures e2!〉〉 = (〈〈e1〉〉,>).(〈〈e2〉〉, responseRate(n)(e1, e2))

That is, the execution of e1 is followed by that of e2 with a delay whose rate is
given by an SLA variable as discussed in Section 3.

51

Uses-interfaces. As explained in Section 2.1, uses-interfaces provide synchronous
interactions with components that offer a certain degree of persistence. For the
nodes n ∈ serves(M) (notice that synchronous interactions can occur more than
once during one module instance):

〈〈n〉〉 =
∑

∀i∈sign(labelM (n))

Pni where Pni = (n i, synchronisationRate(i)).Pni

8.3 Quantitative analysis of timing properties

Finally, we discuss the quantitative analysis that we are able to perform on
a SRML module by using the PEPA Eclipse Plug-in [52] and IPC [21], formal
analysis components of the Sensoria Development Environment3. First, we use
the PEPA Eclipse Plug-in tool to generate the statespace of the derived PEPA
configuration. We used the static analyser and qualitative analysis capabilites
of this tool to determine that the configuration is deadlock free and has no
unreachable local states in any component (no “dead code” in the model).

The analysis of a PEPA term encoding a SRML module is inexpensive be-
cause the statespace of the model is relatively small, meaning that the number
of states of a module grows linearly with respect to the number of nodes. The
reason is that the nodes of a SRML module do not execute independently but
they wait for one another (i.e., typically not more than one at a time is active).

We performed the passage time analysis of the example illustrated in Fig-
ure 37, to investigate the probability of each possible delay between CRgetProposal֠

and CRgetProposal� . We conducted a series of experiments on our PEPA
model to determine the answers to the following questions:

1. Is the advertised SLA ”80% of requests receive a response within 7 seconds”
satisfied by the system at present?

2. What is the bottleneck activity in the system at present (i.e. where is it best
to invest effort in making one of the activities more efficient?)

The first question is answered by computing the cumulative distribution func-
tion (CDF) for the passage from request to response and determining the value
at time t = 10. The second question is answered by performing a sensitivity
analysis. That is, we vary each of the rates used in the model (both up from
the true value, and down from it) and evaluate the CDF repeatedly over this
range of values. The resulting graphs are shown in Figure 39 (the plus denotes
the coordinate for 7 seconds and 80%).

Each of the graphs is a CDF which plots the probability of having completed
the passage of interest by a given time bound. To determine whether the stated
SLA is satisfied we need only inspect the value of this probability at the time
bound. For the given values of the rates we find that it is the case that this SLA
is not satisfied (Figure 39(a)).

3 Our aim is to discuss the proposed method rather than focusing on the results related
to the specific case study, which is used for illustrative purposes.

52

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Rates of the initial model

+

 CDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Varying transferRate(CM)

+

transferRate(CM)=0.25
transferRate(CM)=0.5

transferRate(CM)=0.75
transferRate(CM)=1.0

transferRate(CM)=1.25
transferRate(CM)=1.5

transferRate(CM)=1.75

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Varying responseRate(LE)

+

responseRate(LE)=1.25
responseRate(LE)=1.5

responseRate(LE)=1.75
responseRate(LE)=2.0

responseRate(LE)=2.25
responseRate(LE)=2.5

responseRate(LE)=2.75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Varying executionRate(MA)(P1)

+

executionRate(MA)(P1)=1.25
executionRate(MA)(P1)=1.5

executionRate(MA)(P1)=1.75
executionRate(MA)(P1)=2.0

executionRate(MA)(P1)=2.25
executionRate(MA)(P1)=2.5

executionRate(MA)(P1)=2.75

(c) (d)

Fig. 39. Sensitivity analysis of response time distributions (from [13])

In performing sensitivity analysis we vary each rate through a fixed num-
ber of possible values to see if we can identify an improvement which satisfies
the SLA. We have begun by considering seven possible values here. Three of
these are above the true value (i.e. the activity is being performed faster) and
three are below (i.e. the activity is being performed slower). From the sensitiv-
ity analysis we determine (from Figure 39(b)) that variations in rate parameter
transferRate(CM) have the greatest impact on the passage of interest. Due to the
structure of the model this rate controls the entry into the passage from request
to response so delays here have a greater impact further through the passage. In
contrast variations in rate parameter responseRate(LE) (seen in Figure 39(c))
and executionRate(MA)(P1) (seen in Figure 39(d)) have the least impact over-
all. Thus if seeking to improve the performance of the system we should invest
in improving coTransferRate before trying to improve responseTime(LE). Fig-
ure 39(b) illustrates, for example, how the advertised SLA is satisfied by im-
proving the value of transferRate(CM) to 1.25. It is entirely possible that the
sensitivity analysis will identify several ways in which the SLA can be satisfied.
In this case the service stakeholders can evaluate these in terms of implementa-
tion cost or time and identify the most cost-effective way to improve the service
in order to meet the SLA.

53

9 Related Approaches

One of the main aspects that distinguishes the approach that we proposed from
other work on Web Services (e.g. [8]) and SOC in general (e.g. [2]) is that we
address not the middleware architectural layers (or low-level design issues in
general), but what we call the ‘business level’. For instance, the main concern of
the Service Component Architecture (SCA) [2], from which we have borrowed
concepts and notations, is to provide an open specification “allowing multiple
vendors to implement support for SCA in their development tools and runtime”.
This is why SCA offers a middleware-independent layer for service composition
and specific support for a variety of component implementation and interface
types (e.g. BPEL processes with WSDL interfaces, or Java classes with corre-
sponding interfaces). Our work explores a complementary direction: our research
aims for a modelling framework supported by a mathematical semantics in which
business activities and services can be defined in a way that is independent of the
languages and technologies used for programming and deploying the components
that will execute them. The fact that the modelling framework is equipped with
a formal semantics makes it possible to support the analysis of services, service
compositions and activities, a direction that we are pursuing through the use of
model-checking [7].

Another architectural approach to SOC has been designed [53] that follows
SCA very closely. However, its purpose is to offer a meta-model that covers
service-oriented modelling aspects such as interfaces, wires, processes and data.
Therefore, as in SCA, interfaces are syntactic and bindings are established at
design time, whereas our interfaces are behavioural and binding occurs at run
time. Other approaches to service modelling have considered richer interfaces
that encompass business protocols, e.g. [11,28,24,46,47], but not the dynamic
aspects — discovery and binding — offered by SRML as illustrated in this pa-
per. Indeed, a characteristic that distinguishes our approach from other formal
models of services such as [17] is the fact that we address the dynamic aspects of
SOC, namely run-time discovery and binding. Formalisms for modelling (web)
services tend not to address these. For example, in BPEL, service compositions
are created statically and are governed by a centralised engine. This also holds
for approaches that focus on choreography (e.g. [20,46]), where it is possible to
calculate which are the partners that can properly interact with a service but
the actual discovery and binding processes are not considered. Exceptions can
be found among some of the process calculi that have been developed for captur-
ing semantic foundations of SOC (e.g. [30,18,38]). However, such process calculi
tend not to address dynamic reconfiguration separately from computation, i.e.
the process of discovery and binding is handled as part of the computation per-
formed by a service. As far as we know, SRML is the first service-modelling
language to separate these two concerns.

Indeed, in our opinion, what makes SOC different from other paradigms is
the fact that it concerns run-time, not design-time complexity. This is also the
view exposed in [25] — a very clear account of what distinguishes SOC from
CBD (Component Based Development). Whereas in CBD component selection

54

is either performed at design time or programmed over a fixed universe of com-
ponents, SOC provides a means of obtaining functionalities by orchestrating in-
teractions among components that are procured at run time according to given
(functional) types and service level constraints.

Another area related to the work that we have presented concerns the non-
functional aspects of services, namely the policies and constraints for service
level agreement that have to be taken into account in the composition of ser-
vices. Most of the research developed in this area has been devoted to languages
for modelling specific kinds of policies (over specific non-functional features) and
of selection algorithms, e.g. SCA Policy [2] among several others [41,42,50,49,29].
These languages have been primarily designed to be part of the technology avail-
able for implementing and executing services. As such, they are tailored to the
technological infrastructure that is currently enabling web services and are not
best placed for being used at high-levels of business modelling.

10 Concluding Remarks

In this chapter, we presented an overview of the formal approach for mod-
elling service-oriented application that we developed within Sensoria towards a
methodological and mathematical characterisation of the service-oriented com-
puting paradigm [3]. The approach is built around a prototype language called
SRML — the Sensoria Modelling Reference Language — and offers an en-
gineering environment that includes abstraction mappings from workflow lan-
guages (such as BPEL [15]) and policy languages (such as StPowla [14]), model-
checking techniques that support qualitative analysis, and stochastic analysis
techniques for timing properties. SRML is supported by an Eclipse-based editor
(available from www.cs.le.ac.uk/srml) that is part of the Sensoria Development
Environment (SDE). A mathematical semantics is available for all aspects of the
approach as partially illustrated in the paper (see [4,6,31,32,33,34] for a more
comprehensive account).

This methodology has been tested in a number of other domains, including
telco [7], travel [6], automotive [16] and procurement [31] scenarios. Tutorials
have been given at CONCUR’08, SEFM’08, SFM’09 and DISCOTEC’09. More
extended tutorials were given at the Technical University of Valencia (Spain) and
the Summer School on Web Engineering held in 2007 in La Plata, Argentina.
SRML is also being taught at the University of Leicester to postgraduate stu-
dents in Computer Science.

Acknowledgments

We would like to thank our colleagues in the Sensoria project for many useful
discussions on the topics covered in this paper. Stefania Gnesi and Franco Maz-
zanti (CNR-ISTI) contributed directly to the work presented in Section 7, and
Stephen Gilmore (Edinburgh), Monika Solanki (Leicester) and Vishnu Vankay-
ala (Leicester) to Section 8. Artur Boronat and Yi Hong (Leicester) contributed

55

directly to the development of the SRML Editor. We are also indebted to Colin
Gilmore from Box Tree Mortgage Solutions (Leicester) for taking us through the
mortgage-brockerage case study.

References

1. Global computing initiative. http://cordis.europa.eu/ist/fet/gc.htm.
2. The open service oriented architecture collaboration. Whitepapers and specifica-

tions available from www.osoa.org (see also oasis-opencsa.org/sca).
3. Sensoria consortium, 2007. White paper available at http://www.sensoria-

ist.eu/files/whitePaper.pdf.
4. J. Abreu. Modelling Business Conversations in Service Component Architectures.

PhD thesis, University of Leicester, U.K., 2009.
5. J. Abreu, L. Bocchi, J. L. Fiadeiro, and A. Lopes. Specifying and composing inter-

action protocols for service-oriented system modelling. In J. Derrick and J. Vain,
editors, Formal Methods for Networked and Distributed Systems, FORTE’07, vol-
ume 4574 of LNCS, pages 358–373, 2007.

6. J. Abreu and J. Fiadeiro. A coordination model for service-oriented interactions.
In D. Lea and G. Zavattaro, editors, Coordination Languages and Models, volume
5052 of LNCS, pages 1–16, 2008.

7. J. Abreu, F. Mazzanti, J. Fiadeiro, and S. Gnesi. A model-checking approach for
service component architectures. In D. Lee, A. Lopes, and A. Poetzsch-Heffter, ed-
itors, Formal Techniques for Distributed Systems, FMOODS/FORTE ’09, volume
5522 of LNCS, pages 212–217, 2009.

8. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, 2004.
9. A. Argent-Katwala, J. Bradley, A. Clark, and S. Gilmore. Location-aware qual-

ity of service measurements for service-level agreements. In Trustworthy Global
Computing (TGC’07), volume 4912 of LNCS, pages 222–239. Springer, 2008.

10. M. Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-based model-
checking approach for the analysis of communication protocols for Service-Oriented
Applications. In FMICS’07, LNCS. Springer-Verlag, Berlin, 2007.

11. B. Benatallah, F. Casati, and F. Toumani. Web services conversation modeling:
A cornerstone for e-business automation. IEEE Internet Computing, 8(1):46–54,
2004.

12. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction
and optimization. Journal of the ACM, 44(2):201–236, 1997.

13. L. Bocchi, J. Fiadeiro, S. Gilmore, J. Abreu, M. Solanki, and V. Vankayala. A
formal approach to modelling time properties of service-oriented systems, 2009.
Submitted. (Available from www.cs.le.ac.uk/srml).

14. L. Bocchi, S. Gorton, and S. Reiff-Marganiec. Engineering service-oriented appli-
cations: From stpowla processes to srml models. In J. Fiadeiro and P. Inverardi,
editors, Fundamental Aspects of Software Engineering, volume 4961 of LNCS, pages
163–178, 2008.

15. L. Bocchi, Y. Hong, A. Lopes, and J. Fiadeiro. From BPEL to SRML: a formal
transformational approach. In M. Dumas and R. Heckel, editors, Web Services and
Formal Methods, volume 4937 of LNCS, pages 92–107, 2007.

16. Laura Bocchi, José Luiz Fiadeiro, and Antónia Lopes. Service-oriented modelling
of automotive systems. In COMPSAC, pages 1059–1064. IEEE Computer Society,
2008.

56

17. M. Broy, I. Kruger, and M. Meisinger. A formal model of services. ACM TOSEM,
16(1):1–40, 2007.

18. M. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying
service level agreements. In R. De Nicola, editor, ESOP 2007, volume 4421 of
LNCS, pages 18–32, 2007.

19. C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Performance
modelling with the unified modelling language and stochastic process algebras. In
Computers and Digital Techniques, IEE Proceedings, volume 150, pages 107–120.
IEEE, 2003.

20. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In R. De Nicola, editor, ESOP 2007, volume 4421 of
LNCS, pages 2–17, 2007.

21. A. Clark. The ipclib PEPA Library. In Mor Harchol-Balter, Marta Kwiatkowska,
and Miklos Telek, editors, Proceedings of the 4th International Conference on the
Quantitative Evaluation of SysTems (QEST), pages 55–56. IEEE, September 2007.

22. R. De Nicola and F. W. Vaandrager. Action versus state based logics for transition
systems. In Semantics of Systems of Concurrent Processes, pages 407–419, 1990.

23. Rocco De Nicola and Frits W. Vaandrager. Three logics for branching bisimulation.
J. ACM, 42(2):458–487, 1995.

24. R. M. Dijkman and M. Dumas. Service-oriented design: a multi-viewpoint ap-
proach. International Journal of Cooperative Information Systems, 13(4):337–368,
2004.

25. A. Elfatatry. Dealing with change: components versus services. Communications
of the ACM, 50(8):35–39, 2007.

26. E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244–263, 1986.

27. G. Coulson et al. A generic component model for building systems software. ACM
TOCS, 26(1):1–42, 2008.

28. L. Bordeaux et al. When are two web services compatible? In Technologies for
E-Services, volume 3324 of LNCS, pages 15–28, 2005.

29. L. Zeng et al. Qos-aware middleware for web services composition. IEEE Trans-
actions on Software Engineering, 30(5):311–327, 2004.

30. M. Boreale et al. Scc: a service centered calculus. In M. Bravetti, M. Nunez, and
G. Zavattaro, editors, Web Services and Formal Methods, volume 4184 of LNCS,
pages 38–57, 2006.

31. J. L. Fiadeiro, A. Lopes, and L. Bocchi. A formal approach to service-oriented
architecture. In M. Nunez M. Bravetti and G. Zavattaro, editors, Web Services
and Formal Methods, volume 4184 of LNCS, pages 193–213, 2006.

32. J. L. Fiadeiro, A. Lopes, and L. Bocchi. Algebraic semantics of service component
modules. In J. L. Fiadeiro and P. Y. Schobbens, editors, Algebraic Development
Techniques, volume 4409 of LNCS, pages 37–55, 2007.

33. J. L. Fiadeiro, A. Lopes, and L. Bocchi. An abstract semantics of service discovery
and binding, 2008. Submitted. (Available from www.cs.le.ac.uk/srml).

34. J. L. Fiadeiro and V. Schmitt. Structured co-spans: an algebra of interaction
protocols. In T. Mossakowski, U. Montanari, and M. Haveraaen, editors, Algebra
and Coalgebra in Computer Science, volume 4624 of LNCS, pages 194–209, 2007.

35. I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2004.

36. Q. Gu and P. Lago. A stakeholder-driven service life-cycle model for soa. In
IW-SOSWE’07, pages 1–7, 2007.

57

37. J. Hillston. A Compositional Approach to Performance Modelling. 1996.
38. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web

services. volume 4421 of LNCS, pages 33–47, 2007.
39. P. Mayer, N. Koch, and A. Schroder. A model-driven approach to service orches-

tration. In Proceedings of IEEE International Conference on Services Computing
(SCC 2008), 2008.

40. F. Mazzanti. UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto
di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR. Available from
http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf, 2006.

41. N. Mukhi, P. Plebani, I. Silva-Lepe, and T. Mikalsen. Supporting policy-driven
behaviours in web services: experiences and issues. In Proceedings ICSOC’04, pages
322–328, 2004.

42. A. Mukhija, A. Dingwall-Smith, and D. Rosenblum. Qos-aware service composition
in dino. In ECOWS 2007, pages 3–12. ACM Press, 2007.

43. Object Management Group. Unified Modeling Language. http://www.uml.org/.
44. C. Peltz. Web services orchestration and choreography. IEEE Computer,

36(10):46–52, 2003.
45. J. Rao and X. Su. A survey of automated web service composition methods.

In J. Cardoso and A. Sheth, editors, Semantic Web Services and Web Process
Composition, volume 3387 of LNCS, pages 43–54, 2004.

46. W. Reisig. Modeling and analysis techniques for web services and business pro-
cesses. In FMOODS 2005, volume 3535 of LNCS, pages 243–258, 2005.

47. W. Reisig. Towards a theory of services. In UNISCON 2008, pages 271–281, 2008.
48. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging

Discipline. 1996.
49. K-J. Lin T. Yu. A broker-based framework for qos-aware web service composition.

In Proc. of the Intl. Conf. on e-Technology, e-Commerce and e-Service, pages 22–
29. IEEE Computer Society, 2005.

50. OASIS WSBPEL TC. Web services business process execution language, 2007.
Version 2.0. Technical report, OASIS.

51. M. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-based model
checking approach for the analysis of communication protocols for service-oriented
applications. In S. Leue and P. Merino, editors, Formal Methods for Industrial
Critical Systems, volume 4916 of LNCS, pages 133–148.

52. M. Tribastone. The PEPA Plug-in Project. In Quantitative Evaluation of SysTems,
pages 53–54. IEEE, 2007.

53. W. van der Aalst, M. Beisiegel, K. van Hee, and D. Konig. An soa-based ar-
chitecture framework. Journal of Business Process Integration and Management,
2(2):91–101, 2007.

54. V. Vankayala. Business process modelling using SRML (MSc in Advanced Software
Enginnering - Project Dissertation), 2008.

58

Appendix A —The Iconography

– 42 –

Appendix A – The Iconography

icon represents type sections

component interface
(instantiated when a new
session starts; the lifetime
is that of the session)

business role
(orchestration of inter-
actions)

requires-interface
(bound during service
execution after discovery)

business protocol
(properties required of
external services)

provides-interface
(bound when a new ses-
sion starts)

business protocol
(properties offered by
the service)

uses/serves-interface
(bound to a component in
the bottom/top layer when
a new session starts)

layer protocol (proper-
ties assumed of the
components in the
bottom or top layer)

wire interface
(instantiated together with
the second party)

connector (interaction
protocol and attach-
ments)

external configuration
policy

constraint system

internal configuration
policy

state conditions

59

Appendix B —The GetMortgage Service Module

MODULE GETMORTGAGE is

DATATYPES

sorts: usrdata, prefdata,
 moneyvalue, mortgageproposal,
 loandata, loancontract,
 insurancedata, accountdata,
 setids, bool, nat

PROVIDES

 CR: Customer
CR
Customer

MA
MortgageAgent

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

snd confirmation
  contract

snd confirmation
  contract

 SLA VARIABLES
 CHARGE

 SLA VARIABLES
 CHARGE

REQUIRES

 LE: Lender
 intLE trigger: getproposal?

60

 BA: Bank
 intBA trigger: default

 IN: Insurance
 intIN trigger: default

COMPONENTS

 MA: MortgageAgent
 intMA init: s=INITIAL
 intMA term: s=FINAL

USES

 RE: Registry

EXTERNAL POLICY

 SLA VARIABLES
 MA.CHARGE, MA.getProposal,
 LE.ServiceId, LE.COST, LE.requestMortgage

 CONSTRAINTS

 C1: {MA.CHARGE,MA.getProposal}

 def(c,t)=

€

1 if t ≤ 10 ∗c

1 + 2 ∗ c − 0.2 ∗ t if 10 ∗ c < t ≤ 5 + 10 ∗ c

0 otherwise






 

C2: {LE.ServiceId}

 def(s)=

€

1 if s ∈ MA .lenders

0 otherwise





C3: {MA.getProposal,LE.requestMortgage},

def(t1,t2)=

€

1 if t2 > t1+ CM.Delay + ML.Delay

0 otherwise





C4: {LE.COST,LE.requestMortgage}

 def(c,t)=

€

1

c
+

t

100
 if c < 500

0 otherwise





 

WIRES

MA

MortgageAgent
c4 ME d4

RE
Registry

ask getLenders S1 Straight.
A(prefdata)R(setids)

R1 rpl getLenders

tll regContract

S1

Straight.
T(loandata,loancontract)

R1

prf registerContract

61

MA
MortgageAgent

c1 MB d1
BA
Bank

s&r openAccount
  idData
 loanData
  accountData

S1

i1
i2

o1

Straight.
I(usrdata,
loandata)

O(accountdata)

R1

i1
i2

o1

r&s newMortgageAccount
  idData
 loanData
  accountData

MA

MortgageAgent
c1 MI d1

IN
Insurance

s&r getInsurance
  idData
 loanData
  insuranceData

S1

i1
i2

o1

Straight.
I(usrdata,
loandata)

O(insurancedata)

R1

i1
i2

o1

r&s newMortgageInsurance
  idData
 loanData
  insuranceData

MA

MortgageAgent c1 ML d1
LE
Lender

s&r askProposal
  idData
 income
  proposal
 loanData
 accountIncluded
 insuranceRequired

S1

i1
i2

o1

o2

o3

o4

Straight.
I(usrdata,
moneyvalue)

O(mortgageproposal,
loandata,
bool,bool)

R1

i1
i2

o1

o2

o3

o4

r&s requestMortgage
  idData
 income
  proposal
 loanData
 accountIncluded
 insuranceRequired

r&s signOutLoan
  insuranceData
 accountData
  contract

S1

i1
i2

o1

Straight
I(insurancedata,

accountdata)
O(loancontract)

R1

i1
i2

o1

s&r requestSignOut
  insuranceData
 accountData
  contract

c1 CM d1

MA
MortgageAgent

S1

i1
i2

i3

o1

o2

Straight.
I(usrdata,

moneyvalue,prefdata)
O(mortageproposal,

moneyvalue)

R1

i1
i2

i3

o1

o2

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

R1

i1
Straight

O(loancontract)

S1

i1
snd confirmation
  contract

END MODULE

62

SPECIFICATIONS

LAYER PROTOCOL Registry is

 INTERACTIONS
 rpl getLenders(prefdata):setids
 prf registerContract(loandata,loancontract)
 BEHAVIOUR

BUSINESS ROLE MortgageAgent is

INTERACTIONS
 r&s getProposal
  idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
  proposal:mortgageproposal
 cost:moneyvalue

 s&r askProposal
  idData:usrdata,

 income:moneyvalue,
  proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 s&r getInsurance
  idData:usrdata,
 loanData:loandata,
  insuranceData:insurancedata
 s&r openAccount
  idData:usrdata,
 loanData:loandata,
  accountData:accountdata
 s&r signOutLoan
  insuranceData:insurancedata,
 accountData:accountdata,
  contract:loancontract
 snd confirmation

  contract:loancontract
 ask getLenders(prefdata):setids
 tll regContract(loandata,loancontract)

 SLA VARIABLES
 CHARGE:[0..100]

 ORCHESTRATION

local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,
 PROPOSAL_ACCEPTED, SIGNING, FINAL],
 lenders:setids,
 needAccount, needInsurance:bool,
 insuranceData:insurancedata, accountData:accountdata

63

transition GetClientRequest
triggeredBy getProposal
guardedBy s=INITIAL
effects s’=WAIT_PROPOSAL
 ∧ lenders’= getLenders(prefdata)
 ∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL
 ∧ empty(lender’) ⊃ s’=FINAL
sends ¬empty(lenders’) ⊃ askProposal
 ∧ askProposal.idData=getProposal.idData
 ∧ askProposal.income=getProposal.income
 ∧ empty(lenders’) ⊃ getProposal
 ∧ getProposal.Reply=false

 transition GetLenderProposal
triggeredBy askProposal
guardedBy s=WAIT_PROPOSAL
effects needAccount’=askProposal.accountIncluded
 ∧ needInsurance’=askProposal.insuranceRequired
 ∧ askProposal.Reply ⊃ s’=WAIT_DECISION
 ∧ ¬askProposal.Reply ⊃ s’=FINAL
sends getProposal
 ∧ getProposal.Reply=askProposal.Reply
 ∧ getProposal.proposal=askProposal.proposal
 ∧ getProposal.cost=(CHARGE/100+1)*750

 transition TimeoutProposal
triggeredBy now>getProposal.UseBy
guardedBy s=WAIT_DECISION
effects s’=FINAL
sends askProposal

 transition ProposalNotAccepted
triggeredBy getProposal
guardedBy s=WAIT_DECISION
 ∧ now<askProposal.UseBy
effects s’=FINAL
sends askProposal

 transition ProposalAccepted
triggeredBy getProposal
guardedBy s=WAIT_DECISION
 ∧ now<deadline
effects needAccount ∨ needInsurance ⊃ s’=PROPOSAL_ACCEPTED
 ∧ ¬needAccount ∧ ¬needInsurance ⊃ s’=SIGNING
sends askProposal
 ∧ needAccount ⊃ openAccount
 ∧ openAccount.idData=getProposal.idData
 ∧ openAccount.loanData=getProposal.loanData
 ∧ needInsurance ⊃ getInsurance
 ∧ getInsurance.idData=getProposal.idData
 ∧ getInsurance.loanData=getProposal.loanData
 ∧ ¬needAccount ∧ ¬needInsurance ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

 transition GetAccount
triggeredBy openAccount
guardedBy s=PROPOSAL_ACCEPTED
effects needAccount’=false
 ∧ ¬needInsurance ⊃ s’=SIGNINING
 ∧ accountData=openAccount.accountData

64

sends ¬needInsurance ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

 transition GetInsurance
triggeredBy getInsurance
guardedBy s=PROPOSAL_ACCEPTED
effects needInsurance’=false
 ∧ ¬needAccount ⊃ s’=SIGNING
 ∧ insuranceData=getInsurance.insuranceData
sends ¬needAccount ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

 transition Conclude
triggeredBy signOutLoan
guardedBy s=SIGNING
effects s’=FINAL
sends confirmation
 ∧ confirmation.contract=signOutLoan.contract
 ∧ regContract(askProposal.loanData,signOutLoan.contract)

BUSINESS PROTOCOL Lender is

 INTERACTIONS
 r&s requestMortgage
  idData:usrdata,

 income:moneyvalue,
  proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 r&s requestSignOut
  insuranceData:insurancedata,
 accountData:accountdata,
  contract:loancontract
 BEHAVIOUR
 initiallyEnabled requestMortgage?

 requestMortgage? enables requestSignOut?

BUSINESS PROTOCOL Bank is

 INTERACTIONS
 r&s newMortgageAccount
  idData:usrdata,
 loanData:loandata,
  accountData:accountdata

 BEHAVIOUR
 initiallyEnabled newMortgageAccount?
 newMortgageAccount.Reply after newMortgageAccount!

65

BUSINESS PROTOCOL Insurance is

 INTERACTIONS
 r&s newMortgageInsurance
  idData:usrdata,
 loanData:loandata,
  insuranceData:insurancedata

 BEHAVIOUR
 initiallyEnabled newMortgageInsurance?
 newMortgageInsurance.Reply after newMortgageInsurance!

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 r&s getProposal
  idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
  proposal:mortgageproposal
 cost:moneyvalue

 snd confirmation
  contract:loancontract
 SLA VARIABLES
 CHARGE:[0..100]
 BEHAVIOUR
 initiallyEnabled getProposal?
 getProposal.cost≤750*(CHARGE/100+1) after
 (getProposal! ∧ getProposal.Reply)
 getProposal? ensures confirmation!

END SPECIFICATIONS

66

