Skip to main content

Parallel Linear Genetic Programming

  • Conference paper
Genetic Programming (EuroGP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6621))

Included in the following conference series:

  • 759 Accesses

Abstract

Motivated by biological inspiration and the issue of code disruption, we develop a new form of LGP called Parallel LGP (PLGP). PLGP programs consist of n lists of instructions. These lists are executed in parallel, after which the resulting vectors are combined to produce program output. PGLP limits the disruptive effects of crossover and mutation, which allows PLGP to significantly outperform regular LGP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andre, D., Koza, J.R.: A parallel implementation of genetic programming that achieves super-linear performance. Information Sciences 106(3-4), 201–218 (1998)

    Article  Google Scholar 

  2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction on the Automatic Evolution of computer programs and its Applications. Morgan Kaufmann Publishers, Dpunkt-Verlag, San Francisco, Heidelburg (1998)

    Google Scholar 

  3. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Genetic and Evolutionary Computation, vol. XVI. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  4. Fogelberg, C., Zhang, M.: Linear genetic programming for multi-class object classification. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 369–379. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, MIT Press, Ann Arbor, Cambridge (1975)

    MATH  Google Scholar 

  6. Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  7. Krawiec, K., Bhanu, B.: Visual learning by evolutionary and coevolutionary feature synthesis. IEEE Transactions on Evolutionary Computation 11(5), 635–650 (2007)

    Article  Google Scholar 

  8. Olague Caballero, G., Romero, E., Trujillo, L., Bhanu, B.: Multiclass object recognition based on texture linear genetic programming. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 291–300. Springer, Heidelberg (2007)

    Google Scholar 

  9. Olaguea, G., Cagnoni, S., Lutton, E. (eds.): special issue on evolutionary computer vision and image understanding. Pattern Recognition Letters 27(11) (2006)

    Google Scholar 

  10. Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  11. Zhang, M., Ciesielski, V.B., Andreae, P.: A domain-independent window approach to multiclass object detection using genetic programming. EURASIP Journal on Applied Signal Processing 2003(8), 841–859 (2003); special Issue on Genetic and Evolutionary Computation for Signal Processing and Image Analysis

    Article  MATH  Google Scholar 

  12. Zhang, M., Gao, X., Lou, W.: A new crossover operator in genetic programming for object classification. IEEE Transactions on Systems, Man and Cybernetics, Part B 37(5), 1332–1343 (2007)

    Article  Google Scholar 

  13. Zhang, M., Smart, W.: Using gaussian distribution to construct fitness functions in genetic programming for multiclass object classification. Pattern Recognition Letters 27(11), 1266–1274 (2006); evolutionary Computer Vision and Image Understanding

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Downey, C., Zhang, M. (2011). Parallel Linear Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds) Genetic Programming. EuroGP 2011. Lecture Notes in Computer Science, vol 6621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20407-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20407-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20406-7

  • Online ISBN: 978-3-642-20407-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics