Skip to main content

Predictive Analytics for Semi-structured Case Oriented Business Processes

  • Conference paper
Business Process Management Workshops (BPM 2010)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 66))

Included in the following conference series:

  • 2643 Accesses

Abstract

The goal of our work is to examine the utility of predictive analytics for case-oriented semi-structured business processes. As a first step towards this goal, this paper describes an approach to leverage case history to predict outcomes at decision points in case-oriented semi-structured processes, and examine how the contents of documents at these decision points influence their outcomes. We apply an ant-colony optimization (ACO) based algorithm to create a probabilistic activity graph from traces, and use it to identify key decision points in a given process. For each activity node that represents a decision point in the mined probabilistic graph, the likelihood of different outcomes from the node can be correlated with the contents of documents accessed by the activity node. This is achieved by using a standard decision tree learning algorithm. We validate our approach on correlated case instance traces generated by a simulator that we constructed to implement non-deterministic executions of an automobile insurance claims scenario. In practice we find that our approach can lead to useful predictions at different stages of execution in a semi-structured case oriented process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business process mining: An industrial application. Inf. Syst. 32(5), 713–732 (2007)

    Article  Google Scholar 

  2. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)

    Article  Google Scholar 

  3. van der Aalst, W.M.P., Weske, M., Grnbauer, D.: Case handling: a new paradigm for business process support. KDE 53(2), 129–162 (2005)

    Article  Google Scholar 

  4. van der Aalst, W.M.P., Gunther, C.W., Recker, M.J., Reichert, M.: Using Process Mining to Analyze and Improve Process Flexibility (Position Paper). In: CAiSE 2006 Workshops -7th Intl Workshop on Business Process Modeling, Development (2006)

    Google Scholar 

  5. Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communucation Networks. Journal of Artificial Intelligence, 317–365 (1998)

    Google Scholar 

  6. Critical Capabilities for Composite Content Management Applications. Gartner Report (2010)

    Google Scholar 

  7. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)

    Article  Google Scholar 

  8. Curbera, F., Doganata, Y., Martens, A., Mukhi, N., Slominski, A.: Business Provenance - A Technology to Increase Traceability of End-to-End Operations. In: OTM Conferences, pp. 100–119

    Google Scholar 

  9. Dorn, C., Burkhart, T., Werth, D., Dustdar, S.: Self-adjusting recommendations for people-driven ad-hoc processes. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 327–342. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)

    Article  Google Scholar 

  11. Herbst, J.: A Machine Learning Approach to Workflow Management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Herbst, J., Karagiannis, D.: Integrating Machine Learning and Workflow Management to Support Acquisition and Adaption of Workflow Models. In: DEXA Workshop 1998, pp. 745–752 (1998)

    Google Scholar 

  13. IBM Insurance Application Architecture, http://www-03.ibm.com/industries/insurance/us/detail/solution/P669447B27619A15.html?tab=3

  14. IBM Advanced Case Management, http://www-01.ibm.com/software/data/advanced-case-management/technologies.html

  15. Lakshmanan, G.T., Strom, R.: Biologically-Inspired Distributed Middleware Management for Stream Processing Systems. ACM Middleware, 223–242 (2008)

    Google Scholar 

  16. Nakatumba, J., van der Aalst, W.M.P.: Analyzing Resource Behavior Using Process Mining. In: Business Process Management Workshops, pp. 69–80 (2009)

    Google Scholar 

  17. Oracle JD Edwards EnterpriseOne Case Management, http://www.oracle.com/applications/peoplesoft/crm/ent_one/module/case_management.html

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  19. Rozinat, A., van der Aalst, W.M.P.: Decision mining in proM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. Knowledge Discovery in Data Mining, 275–284 (2005)

    Google Scholar 

  21. Serebrenik, A., Sidorova, N.: Predicting service request rates for adaptive resource allocation in SOA. In: Proceedings 5th International Workshop on Enterprise and Organizational Modeling & Simulation (EOMAS 2009), pp. 1–14 (2009)

    Google Scholar 

  22. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lakshmanan, G.T., Duan, S., Keyser, P.T., Curbera, F., Khalaf, R. (2011). Predictive Analytics for Semi-structured Case Oriented Business Processes. In: zur Muehlen, M., Su, J. (eds) Business Process Management Workshops. BPM 2010. Lecture Notes in Business Information Processing, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20511-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20511-8_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20510-1

  • Online ISBN: 978-3-642-20511-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics