Skip to main content

On the Design of Boolean Network Robots

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6624))

Included in the following conference series:

  • 1945 Accesses

Abstract

Dynamical systems theory and complexity science provide powerful tools for analysing artificial agents and robots. Furthermore, they have been recently proposed also as a source of design principles and guidelines. Boolean networks are a prominent example of complex dynamical systems and they have been shown to effectively capture important phenomena in gene regulation. From an engineering perspective, these models are very compelling, because they can exhibit rich and complex behaviours, in spite of the compactness of their description. In this paper, we propose the use of Boolean networks for controlling robots’ behaviour. The network is designed by means of an automatic procedure based on stochastic local search techniques. We show that this approach makes it possible to design a network which enables the robot to accomplish a task that requires the capability of navigating the space using a light stimulus, as well as the formation and use of an internal memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aldana, M., Balleza, E., Kauffman, S., Resendiz, O.: Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology 245, 433–448 (2007)

    Article  MathSciNet  Google Scholar 

  2. Aldana, M., Coppersmith, S., Kadanoff, L.: Boolean dynamics with random couplings. In: Kaplan, E., Marsden, J., Sreenivasan, K. (eds.) Perspectives and Problems in Nonlinear Science. A celebratory volume in honor of Lawrence Sirovich. Springer Applied Mathematical Sciences Series. Springer, Berlin (2003)

    Google Scholar 

  3. Ansaloni, L., Villani, M., Serra, R.: Dynamical critical systems for information processing: a preliminary study. In: Villani, M., Cagnoni, S. (eds.) Proceedings of CEEI 2009 - Workshop on Complexity, Evolution and Emergent Intelligence, Reggio Emilia, Italy (2009), http://www.aixia09.unimore.it/index.php/workshops/64

  4. Bar–Yam, Y.: Dynamics of Complex Systems. Studies in nonlinearity. Addison–Wesley, Reading (1997)

    MATH  Google Scholar 

  5. Braunewell, S., Bornholdt, S.: Reliability of genetic networks is evolvable. Physical Review E 77, 060902:1–4 (2008)

    Article  Google Scholar 

  6. Di Paolo, E.: Evolving spike-timing-dependent plasticity for single-trial learning in robots. Phil. Trans. of the Royal Soc. of London, Series A (2003)

    Google Scholar 

  7. Dorigo, M.: Learning by probabilistic Boolean networks. In: Proceedings of World Congress on Computational Intelligence – IEEE International Conference on Neural Networks, Orlando, Florida, pp. 887–891 (1994)

    Google Scholar 

  8. Esmaeili, A., Jacob, C.: Evolution of discrete gene regulatory models. In: Keijzer, M. (ed.) Proceedings of GECCO 2008 – Genetic and Evolutionary Computation Conference, Atlanta, GA, pp. 307–314 (2008)

    Google Scholar 

  9. Fretter, C., Drossel, B.: Response of Boolean networks to perturbations. European Physical Journal B 62, 365–371 (2008)

    Article  Google Scholar 

  10. Iida, F., Pfeifer, R.: Sensing through body dynamics. Robotics and Autonomous Systems 54, 631–640 (2006)

    Article  Google Scholar 

  11. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  12. Kauffman, S.: Adaptive automata based on Darwinian selection. Physica D 22, 68–82 (1986)

    Article  MathSciNet  Google Scholar 

  13. Kauffman, S.: Antichaos and adaptation. Scientific American 265(2), 78–84 (1991)

    Article  Google Scholar 

  14. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, UK (1993)

    Google Scholar 

  15. Lemke, N., Mombach, J., Bodmann, B.: A numerical investigation of adaptation in populations of random Boolean networks. Physica A 301, 589–600 (2001)

    Article  MATH  Google Scholar 

  16. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65 (2009)

    Google Scholar 

  17. Nolfi, S., Floreano, D.: Evolutionary robotics. The MIT Press, Cambridge (2000)

    Google Scholar 

  18. Patarnello, S., Carnevali, P.: Learning networks of neuron with Boolean logic. Europhysics Letters 4(4), 503–508 (1986)

    Article  Google Scholar 

  19. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge (2006)

    Google Scholar 

  20. Ribeiro, A., Kauffman, S., Lloyd-Price, J., Samuelsson, B., Socolar, J.: Mutual information in random Boolean models of regulatory networks. Physical Review E 77, 011901:1–10 (2008)

    MathSciNet  Google Scholar 

  21. Roli, A., Arcaroli, C., Lazzarini, M., Benedettini, S.: Boolean networks design by genetic algorithms. In: Villani, M., Cagnoni, S. (eds.) Proceedings of CEEI 2009 - Workshop on Complexity, Evolution and Emergent Intelligence, Reggio Emilia, Italy (2009), http://www.aixia09.unimore.it/index.php/workshops/64

  22. Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: Additional material to the paper ‘On the design of Boolean network robots’ (2011), http://iridia.ulb.ac.be/supp/IridiaSupp2011-004

  23. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (2009)

    MATH  Google Scholar 

  24. Serra, R., Villani, M., Graudenzi, A., Kauffman, S.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. Journal of Theoretical Biology 246, 449–460 (2007)

    Article  MathSciNet  Google Scholar 

  25. Serra, R., Zanarini, G.: Complex Systems and Cognitive Processes. Springer, Berlin (1990)

    Book  Google Scholar 

  26. Shmulevich, I., Dougherty, E.: Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. SIAM, Philadelphia (2009)

    MATH  Google Scholar 

  27. Szejka, A., Drossel, B.: Evolution of canalizing Boolean networks. European Physical Journal B 56, 373–380 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roli, A., Manfroni, M., Pinciroli, C., Birattari, M. (2011). On the Design of Boolean Network Robots. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2011. Lecture Notes in Computer Science, vol 6624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20525-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20525-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20524-8

  • Online ISBN: 978-3-642-20525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics