Abstract
Automated reaction mapping is an important tool in cheminformatics where it may be used to classify reactions or validate reaction mechanisms. The reaction mapping problem is known to be NP-Complete and may be formulated as an optimization problem. In this paper we present three algorithms that continue to obtain optimal solutions to this problem, but with significantly improved runtimes over the previous CCV algorithm. Our algorithmic improvements include (a) the use of a fast (but not 100% accurate) canonical labeling algorithm, (b) name reuse (i.e., storing intermediate results rather than recomputing), and (c) an incremental approach to canonical name computation. Experimental results on chemical reaction databases demonstrate our 2-CCV NR FDN algorithm usually performs over ten times faster than previous fastest automated reaction mapping algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Muharam, Y., Warnatz, J.: Kinetic Modelling of the Oxidation of Large Aliphatic Hydrocarbons Using an Automatic Mechanism Generation. Phys. Chem. Chem. Phys. 9, 4218–4229 (2007)
Matheu, D., Grenda, J.: A Systematically Generated, Pressure-Dependent Mechanism for High-Conversion Ethane Pyrolysis. 1. Pathways to the Minor Products. J. Phys. Chem. 109, 5332–5342 (2005)
Cartensen, H., Dean, A.M.: Rate Constant Rules for the Automated Generation of Gas-Phase Reaction Mechanisms. J. Phys. Chem. 113, 367–380 (2009)
Nemeth, A., Vidoczy, T., Heberger, K., Kuti, Z., Wagner, J.: MECHGEN: Computer Aided Generation and Reduction of Reaction Mechanisms. J. Chem. Inf. Comput. Sci. 42, 208–214 (2002)
Buda, F., Bounaceur, R., Warth, V., Glaude, P.A., Fournet, R., Battin-Leclerc, F.: Progress Toward a Unified Detailed Kinetic Model for the Autoignition of Alkanes from C4 to C10 Between 600 and 1200 K. Combust. Flame. 142, 170–186 (2005)
Straube, R., Flockerzi, D., Muller, S.C., Hauser, J.B.: Reduction of Chemical Reaction Networks Using Quasi-Integrals. J. Phys. Chem. 109, 441–450 (2005)
Pepiot-Desjardins, P., Pitsch, H.: An Efficient Error-propagation-based Reduction Method for Large Chemical Kinetic Mechanisms. Combust. Flame. 154, 67–81 (2008)
Liang, L., Stevens, J., Raman, S., Farrell, J.: The Use of Dynamic Adaptive Chemistry in Combustion Simulation of Gasoline Surrogate Fuels. Combust. Flame. 156, 1493–1502 (2009)
Nagy, T., Turanyi, T.: Reduction of Very Large Reaction Mechanisms Using Methods Based on Simulation Error Minimization. Combust. Flame. 156, 417–428 (2009)
Sun, W., Chen, Z., Gou, X., Yiguang, J.: A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms. Combust. Flame. 157, 1298–1307 (2010)
Shi, Y., Ge, H., Brakora, J., Reitz, R.: Automatic Chemistry Mechanism Reduction of Hydrocarbon Fuels for HCCI Engines Based on DRGEP and PCA Methods with Error Control. Energy & Fuels 24, 1646–1654 (2010)
Kovacs, T., Zsely, I., Kramarics, A., Turanyi, T.: Kinetic Analysis of Mechanisms of Complex Pyrolytic Reactions. J. Anal. Appl. Pyrolysis. 79, 252–258 (2007)
Crabtree, J.D., Mehta, D.P.: Automated Reaction Mapping. J. Exp. Algorithmics. 13, 1.15–1.29 (2009)
Akutsu, T.: Efficient Extraction of Mapping Rules of Atoms from Enzymatic Reaction Data. J. Comput. Biol. 11, 449–462 (2004)
Crabtree, J., Mehta, D., Kouri, T.: An Open-Source Java Platform for Automated Reaction Mapping. J. Chem. Inf. Model. 50(9), 1751–1756 (2010)
Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press, New York (2003)
Babai, L., Luks, E.: Canonical labeling of graphs. In: STOC 1983: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171–183. ACM, New York (1983)
Morgan, H.L.: The Generation of a Unique Machine Description for Chemical Structures - A Technique Developed at Chemical Abstracts Service. J. Chem. Doc. 5(2), 107–113 (1965)
B. McKay. No automorphisms, yes? (2004), http://cs.anu.edu.au/~bdm/nauty/
McKay, B.: Practical Graph Isomorphism. Congr. Numer. 30, 45–87 (1981)
Faulon, J.-L., Collins, M.J., Carr, R.D.: The Signature Molecular Descriptor. 4. Canonizing Molecules Using Extended Valence Sequences. J. Chem. Inf. Model. 44(2), 427–436 (2004)
Babai, L., Erdos, P., Selkow, S.: Random Graph Isomorphism. Siam J. Comput. 9(3), 628–635 (1980)
Czajka, T., Panduranga, G.: Improved Random Graph Isomorphism. Journal of Discrete Algorithms 6, 85–92 (2008)
Felix, L., Valiente, G.: Efficient Validation of Metabolic Pathway Databases. In: Proc. 6th Int. Symp. Computational Biology and Genome Informatics, pp. 1209–1212 (2005)
Arita, M.: Metabolic Reconstruction Using Shortest Paths. Simulation Practice and Theory 8(2), 109–125 (2000)
Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a Chemical Structure Comparison Method for Integrated Analysis of Chemical and Genomic Information in the Metabolic Pathways. J. Am. Chem. Soc. 125(1), 11853–11865 (2003)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1990)
Korner, R., Apostolakis, J.: Automatic Determination of Reaction Mappings and Reaction Center Information. 1. The Imaginary Transition State Energy Approach. Journal of Chemical Information and Modeling 48(6), 1181–1189 (2008)
Apostolakis, J., Sacher, O., Korner, R., Gasteiger, J.: Automatic Determination of Reaction Mappings and Reaction Center Information. 2. Validation on a Biochemical Reaction Database. Journal of Chemical Information and Modeling 48(6), 1190–1198 (2008)
Gas Research Institute. Gri-mech 3.0, http://www.me.berkeley.edu/gri-mech/
Naik, C.V., Dean, A.M.: Detailed Kinetic Modeling of Ethane Oxidation. Combust. Flame. 145, 16–37 (2006)
Randolf, K.L., Dean, A.M.: Hydrocarbon Fuel Effects in Solid-oxide Fuel Cell Operation: An Experimental and Modeling Study of n-hexane Pyrolysis. Phys. Chem. Chem. Phys. 9, 4245–4258 (2007)
Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of n-heptane oxidation. Combust. Flame. 114(1-2), 149–177 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kouri, T., Mehta, D. (2011). Improved Automated Reaction Mapping. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-20662-7_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20661-0
Online ISBN: 978-3-642-20662-7
eBook Packages: Computer ScienceComputer Science (R0)