Abstract
The tremendous improvement in SAT solving has made SAT solvers a core engine for many real world applications. Though still being a branch-and-bound approach purposive engineering of the original algorithm has enhanced state-of-the-art solvers to tackle huge and difficult SAT instances. The bulk of solving time is spent on iteratively propagating variable assignments that are implied by decisions.
In this paper we present two approaches on how to extend the broadly applied Unit Propagation technique where a variable assignment is implied iff a clause has all but one of its literals assigned to false. We propose efficient ways to utilize more reasoning in the main component of current SAT solvers so as to be less dependent on felicitous branching decisions.
This work was supported by DFG-SPP 1307, project “Structure-based Algorithm Engineering for SAT-Solving”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The international SAT competition (2002-2009), www.satcompetition.org
Aspvall, B., Plass, M.F., Tarjan, R.E.: A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas. Inf. Proc. Lett. 8, 121–123 (1979)
Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S.J., Sais, L.: A generalized framework for conflict analysis. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 21–27. Springer, Heidelberg (2008)
Bacchus, F.: Enhancing Davis Putnam with Extended Binary Clause Reasoning. In: 18th AAAI Conference on Artificial Intelligence, pp. 613–619 (2002)
Bacchus, F.: Exploring the computational tradeoff of more reasoning and less searching. In: SAT, pp. 7–16 (2002)
Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)
Beame, P., Kautz, H.A., Sabharwal, A.: Understanding the power of clause learning. IJCAI, 1194–1201 (2003)
Berre, D.L.: Exploiting the real power of unit propagation lookahead. Electronic Notes in Discrete Mathematics 9, 59–80 (2001)
Biere, A.: Precosat solver description (2009), fmv.jku.at/precosat/preicosat-sc09.pdf
Biere, A.: Picosat essentials. JSAT 4, 75–97 (2008)
Biere, A.: Lazy hyper binary resolution. In: Algorithms and Applications for Next Generation SAT Solvers, Dagstuhl Seminar 09461, Dagstuhl, Germany (2009)
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2009)
Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IJCAI, 515–522 (2001)
Chu, G., Harwood, A., Stuckey, P.J.: Cache conscious data structures for boolean satisfiability solvers. JSAT 6, 99–120 (2009)
Cook, S.A.: The complexity of theorem-proving procedures. In: STOC (1971)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press and McGraw-Hill Book Company (2001)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Han, H., Somenzi, F.: On-the-fly clause improvement. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 209–222. Springer, Heidelberg (2009)
Heule, M.: SmArT Solving. PhD thesis, Technische Universiteit Delft (2008)
Heule, M., Maaren, H.V.: Aligning cnf- and equivalence-reasoning. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 174–181. Springer, Heidelberg (2005)
Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the Tenth European Conference on Artificial Intelligence, ECAI 1992, pp. 359–363 (1992)
Kottler, S.: Solver descriptions for the SAT competition 2009, satcompetition.org
Kottler, S.: SAT Solving with Reference Points. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 143–157. Springer, Heidelberg (2010)
Kottler, S., Kaufmann, M., Sinz, C.: Computation of renameable horn backdoors. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 154–160. Springer, Heidelberg (2008)
Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Principles and Practice of Constraint Programming (1997)
Marques-Silva, J.P.: Practical Applications of Boolean Satisfiability. In: Workshop on Discrete Event Systems, WODES 2008 (2008)
Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: DAC (2001)
Pipatsrisawat, K., Darwiche, A.: On modern clause-learning satisfiability solvers. J. Autom. Reasoning 44(3), 277–301 (2010)
Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: Cliques, Coloring, and Satisfiability: DIMACS Implementation Challenge (1993)
Van Gelder, A., Tsuji, Y.K.: Satisfiability testing with more reasoning and less guessing. In: Johnson, D.S., Trick, M. (eds.) Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. AMS, Providence (1996)
Velev, M.N.: Using rewriting rules and positive equality to formally verify wide-issue out-of-order microprocessors with a reorder buffer. In: DATE 2002 (2002)
Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. IJCAI (2003)
Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: ICCAD 2001 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaufmann, M., Kottler, S. (2011). Beyond Unit Propagation in SAT Solving. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-20662-7_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20661-0
Online ISBN: 978-3-642-20662-7
eBook Packages: Computer ScienceComputer Science (R0)