Abstract
This paper introduces a multi-start search approach to dynamic traveling salesman problem (DTSP). Our experimental problem is stochastic and dynamic. Our search algorithm is dynamic because it explicitly incorporates the interaction of change and search over time. The result of our experiment demonstrates the effectiveness and efficiency of the algorithm. When we use a matrix to construct the solution attractor from the set of local optima generated by the multi-start search, the attractor-based search can provide even better result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Corne, D.W., Oates, M.J., Smith, G.D.: Telecommunications Optimization: Heuristic and Adaptive Techniques. John Wiley & Sons, Chichester (2000)
Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and Dynamic Networks and Routing. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing, Handbooks in Operations Research and Management Science, vol. 8, pp. 141–296. Elsevier, Amsterdam (1995)
Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Dordrecht (2002)
Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP: Ants Caught in a Traffic Jam. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 88–99. Springer, Heidelberg (2002)
Guntsch, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)
Morrison, R.W.: Designing Evolutionary for Dynamic Environments. Springer, Berlin (2001)
Tfaili, W., Siarry, P.: A New Charged ant Colony Algorithm for Continuous Dynamic Optimization. Applied Mathematics and Computation 197, 604–613 (2008)
Weicker, K.: Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere Verlag, Berlin (2003)
Yang, S., Ong, Y.-S., Jin, Y.: Evolutionary Computation in Dynamic and Uncertain Environments. Springer, Berlin (2007)
Younes, A., Areibi, S., Calamai, P., Basir, O.: Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments. In: Kosinski, W. (ed.) Advances in Evolutionary Algorithms, InTech, Croatia, pp. 207–230 (2008)
Morrison, R.W., De Jong, K.A.: Triggered Hypermutation Revisited. In: Proceedings of 2000 Congress on Evolutionary Computation, pp. 1025–1032 (2000)
Tinos, R., Yang, S.: A Self-organizing Random Immigrants Genetic Algorithm for Dynamic Optimization Problems. Genetic Programming and Evolvable Machines 8(3), 255–286 (2007)
Wineberg, M., Oppacher, F.: Enhancing the GA’s Ability to Cope with Dynamic Environments. In: Proceedings of Genetic and Evolutionary Computation Conference, GEC 2005, pp. 3–10 (2000)
Yang, S., Yao, X.: Population-based Incremental Learning with Associative Memory for Dynamic Environments. IEEE Transactions on Evolutionary Computation 12(5), 542–561 (2008)
Simões, A., Costa, E.: An Immune System-based Genetic Algorithm to Deal with Dynamic Environments: Diversity and Memory. In: Proceedings of International Conference on Neural Networks and Genetic Algorithms, pp. 168–174 (2003)
Yang, S.: Genetic Algorithms with Memory and Elitism Based Immigrants in Dynamic Environments. Evolutionary Computation 16(3), 385–416 (2008)
Branke, J., Kaussler, T., Schmidt, C., Schmeck, H.: A Multi-population Approach to Dynamic Optimization Problems. In: Proceedings of 4th International Conference on Adaptive Computing in Design and Manufacturing, pp. 299–308. Springer, Berlin (2000)
Ursem, R.K.: Multinational GA: Optimization Techniques in Dynamic Environments. In: Proceedings of the 2nd Genetic and Evolutionary Computation Conferences, pp. 19–26. Morgan Kaufman, San Francisco (2000)
Gambardella, L.-M., Taillard, E.D., Dorigo, M.: Ant Colonies for the Quadratic Assignment Problem. Journal of the Operational Research Society 50, 167–176 (1999)
Stützle, T., Hoos, H.: Improvements on the Ant System: Introducing MAX(MIN) Ant System. In: Proceedings of the International Conference on Artificial Neutral Networks and Genetic Algorithms, pp. 245–249. Springer, Berlin (1997)
Guntsch, M., Middendorf, M.: Applying Population Based ACO to Dynamic Optimization Problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)
Burkard, R.E., Deineko, V.G., Dal, R.V.: Well-solvable Special Cases of the Travelling Salesman Problem: a survey. SIAM Rev. 40(3), 496–546 (1998)
Li, C., Yang, M., Kang, L.: A New Approach to Solving Dynamic Travelling Salesman Problems. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236–243. Springer, Heidelberg (2006)
Psaraftis, H.N.: Dynamic vehicle routing. In: Golen, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies, pp. 223–248. Elsevier, Amsterdam (1988)
Kang, L., Zhou, A., McKay, B., Li, Y., Kang, Z.: Benchmarking Algorithms for Dynamic Travelling Salesman Problem. In: Congress on Evolutionary Computation CEC 2004, pp. 1286–1292 (2004)
Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton University Press, Princeton (2003)
MartÃ, R., Moreno-Vega, J.M., Duarte, A.: Advanced Multi-start Methods. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 265–281. Springer, Berlin (2010)
Boese, K.D., Kahng, A.B., Muddu, S.: A New Adaptive Multi-start Technique for Combinatorial Global Optimization. Oper. Res. Lett. 16, 101–113 (1994)
Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1998)
Li, W.: Seeking Global Edges for Travelling Salesman Problem in Multi-start Search. J. Global Optimization. Online First Articles (2011)
Glover, F.: Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman Problems. Discrete Applied Math. 65, 223–253 (1996)
Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)
Laguna, M., MartÃ, R.: GRASP and Path Relinking for a 2-player Straight Line Crossing Minimization. INFORMS J. Comput. 11(1), 44–52 (1999)
Resende, M.G.C., Mart, R., Gallego, M., Duarte, A.: GRASP and Path Relinking for the Max-min Diversity Problem. Comput. And Oper. Res. 37(3), 498–508 (2010)
Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, W. (2011). A Parallel Multi-start Search Algorithm for Dynamic Traveling Salesman Problem. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-20662-7_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20661-0
Online ISBN: 978-3-642-20662-7
eBook Packages: Computer ScienceComputer Science (R0)