Abstract
Recently, an interest in constructing pseudorandom or hitting set generators for restricted branching programs has increased, which is motivated by the fundamental problem of derandomizing space bounded computations. Such constructions have been known only in the case of width 2 and in very restricted cases of bounded width. In our previous work, we have introduced a so-called richness condition which is, in a certain sense, sufficient for a set to be a hitting set for read-once branching programs of width 3. In this paper, we prove that, for a suitable constant C, any almost Clogn-wise independent set satisfies this richness condition. Hence, we achieve an explicit polynomial time construction of a hitting set for read-once branching programs of width 3 with the acceptance probability greater than \(\sqrt{12/13}\) by using the result due to Alon et al. (1992).
This research was partially supported by projects GA ČR P202/10/1333, MŠMT ČR 1M0545, and AV0Z10300504.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures and Algorithms 3(3), 289–304 (1992)
Bogdanov, A., Dvir, Z., Verbin, E., Yehudayoff, A.: Pseudorandomness for width 2 branching programs. ECCC Report No.70 (2009)
Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for regular branching programs. In: Proceedings of the FOCS 2010 Fifty-First Annual IEEE Symposium on Foundations of Computer Science, pp. 41–50 (2010)
Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching programs. In: Proceedings of the FOCS 2010 Fifty-First Annual IEEE Symposium on Foundations of Computer Science, pp. 30–39 (2010)
De, A., Etesami, O., Trevisan, L., Tulsiani, M.: Improved pseudorandom generators for depth 2 circuits. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 504–517. Springer, Heidelberg (2010)
Goldreich, O., Wigderson, A.: Improved derandomization of BPP using a hitting set generator. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 131–137. Springer, Heidelberg (1999)
Koucký, M., Nimbhorkar, P., Pudlák, P.: Pseudorandom generators for group products. To appear in Proceedings of the STOC 2011 Forty-Third ACM Symposium on Theory of Computing. ACM, New York (2011)
Meka, R., Zuckerman, D.: Pseudorandom generators for polynomial threshold functions. In: Proceedings of the STOC 2010 Forty-Second ACM Symposium on Theory of Computing, pp. 427–436. ACM, New York (2010)
Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4), 449–461 (1992)
Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994)
Šíma, J., Žák, S.: A polynomial time constructible hitting set for restricted 1-branching programs of width 3. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 522–531. Springer, Heidelberg (2007)
Šíma, J., Žák, S.: A polynomial time construction of a hitting set for read-once branching programs of width 3. ECCC Report No. 88 (2010)
Šíma, J., Žák, S.: A sufficient condition for sets hitting the class of read-once branching programs of width 3 (submitted)
Wegener, I.: Branching Programs and Binary Decision Diagrams—Theory and Applications. SIAM Monographs on Discrete Mathematics and Its Applications. SIAM, Philadelphia (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Šíma, J., Žák, S. (2011). Almost k-Wise Independent Sets Establish Hitting Sets for Width-3 1-Branching Programs. In: Kulikov, A., Vereshchagin, N. (eds) Computer Science – Theory and Applications. CSR 2011. Lecture Notes in Computer Science, vol 6651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20712-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-20712-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20711-2
Online ISBN: 978-3-642-20712-9
eBook Packages: Computer ScienceComputer Science (R0)