Abstract
It is shown that the problem of computing the Euler function is closely related to the problem of computing the permanent of a matrix as well as to the derandomization of the Identity Testing problem. Specifically, it is shown that (1) if computing the Euler function over a finite field is hard then computing permanent over the integers is also hard, and (2) if computing any factor of the Euler function over a field is hard then the Identity Testing problem over the field can be derandomized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, M.: Proving lower bounds via pseudo-random generators. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg (2005)
Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)
Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, Heidelberg (1990)
Bell, J.: Euler and the pentagonal number theorem, http://arxiv.org/abs/math.HO/0510054
Euler, L.: De mirabilis proprietatibus numerorum pentagonalium. Acta Academiae Scientarum Imperialis Petropolitinae 4, 56–75 (1783),Translation by Jordan Bell , http://arxiv.org/abs/math/0505373
Koiran, P.: Shallow circuits with high-powered inputs, http://arxiv.org/abs/1004.4960
Koiran, P.: Valiants’s model and the cost of computing integers. Computational Complexity 13, 131–146 (2004)
Valiant, L.G.: Completeness classes in algebra. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 249–261 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Agrawal, M. (2011). On the Arithmetic Complexity of Euler Function. In: Kulikov, A., Vereshchagin, N. (eds) Computer Science – Theory and Applications. CSR 2011. Lecture Notes in Computer Science, vol 6651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20712-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-20712-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20711-2
Online ISBN: 978-3-642-20712-9
eBook Packages: Computer ScienceComputer Science (R0)