Skip to main content

Bell Inequalities: What Do We Know about Them and Why Should Cryptographers Care?

(Invited Talk)

  • Conference paper
Information Theoretic Security (ICITS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6673))

Included in the following conference series:

  • 581 Accesses

Abstract

Bell inequalities are linear constraints on the set of output-probabilities of multi-player protocols that are satisfied by all classical (i.e., local realist) protocols, but that can be violated by quantum protocols using entanglement. This talk will survey the history and present state of knowledge regarding such inequalities, with a view to their application in (quantum) cryptography.

Supported by a Vidi grant from NWO, and EU-grant QCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777–780 (1935)

    Article  MATH  Google Scholar 

  3. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Physical Review Letters 23(15), 880–884 (1969)

    Article  Google Scholar 

  4. Aravind, P.K.: A simple demonstration of Bell theorem involving two observers and no probabilities or inequalities. quant-ph/0206070 (2002)

    Google Scholar 

  5. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings of 19th IEEE CCC, pp. 236–249 (2004)

    Google Scholar 

  6. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. In: Proceedings of 26th IEEE CCC (2011); quant-ph/0608146

    Google Scholar 

  7. Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.: Unbounded violations of bipartite Bell inequalities via Operator Space theory. Communications in Mathematical Physics 300(3), 715–739 (2010); Shorter version appeared in PRL 104:170405

    Article  MathSciNet  MATH  Google Scholar 

  8. Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Communications in Mathematical Physics (2010)

    Google Scholar 

  9. Regev, O.: Bell violations through independent bases games. arXiv:1101.0576 (January 3, 2011)

    Google Scholar 

  10. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Physical Review Letters 78, 3414–3417 (1997); quant-ph/9605044

    Article  Google Scholar 

  11. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Physical Review Letters 78, 3410 (1997); quant-ph/9603004

    Article  Google Scholar 

  12. Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment scheme provably unbreakable by both parties. In: Proceedings of 34th IEEE FOCS, pp. 362–371 (1993)

    Google Scholar 

  13. Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R., Schaffner, C.: Position-based quantum cryptography: Impossibility and constructions. arXiv:1009.2490 (September 13, 2010)

    Google Scholar 

  14. Ekert, A.: Quantum cryptography based on Bell’s theorem. Physical Review Letters 67, 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Physical Review Letters 98, 230501 (2008)

    Article  Google Scholar 

  16. Brunner, N., Pironio, S., Acin, A., Gisin, N., Méthot, A., Scarani, V.: Testing the dimension of Hilbert spaces. Physical Review Letters 100(21), 210503 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Wolf, R. (2011). Bell Inequalities: What Do We Know about Them and Why Should Cryptographers Care?. In: Fehr, S. (eds) Information Theoretic Security. ICITS 2011. Lecture Notes in Computer Science, vol 6673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20728-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20728-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20727-3

  • Online ISBN: 978-3-642-20728-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics