Skip to main content

Design and Verify: A New Scheme for Generating Cutting-Planes

  • Conference paper
Integer Programming and Combinatoral Optimization (IPCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6655))

Abstract

A cutting-plane procedure for integer programming (IP) problems usually involves invoking a black-box procedure (such as the Gomory-Chvátal (GC) procedure) to compute a cutting-plane. In this paper, we describe an alternative paradigm of using the same cutting-plane black-box. This involves two steps. In the first step, we design an inequality cx ≤ d, independent of the cutting-plane black-box. In the second step, we verify that the designed inequality is a valid inequality by verifying that the set P ∩ {x ∈ ℝn: cx ≥ d + 1} ∩ ℤn is empty using cutting-planes from the black-box. Here P is the feasible region of the linear-programming relaxation of the IP. We refer to the closure of all cutting-planes that can be verified to be valid using a specific cutting-plane black-box as the verification closure of the considered cutting-plane black-box. This paper conducts a systematic study of properties of verification closures of various cutting-plane black-box procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed integer 0-1 programs. Mathematical Programming 58, 295–324 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra and its Applications 114, 455–499 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook, W., Coullard, C.R., Turan, G.: On the complexity of cutting plane proof. Mathematical Programming 47, 11–18 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cook, W., Dash, S.: On the matrix cut rank of polyhedra. Mathematics of Operations Research 26, 19–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Mathematical Programming 58, 155–174 (1990)

    Article  MATH  Google Scholar 

  7. Cornuéjols, G., Li, Y.: On the rank of mixed 0-1 polyhedra. Mathematical Programming 91, 391–397 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dadush, D., Dey, S.S., Vielma, J.P.: The Chvátal-Gomory Closure of Strictly Convex Body (2010), http://www.optimization-online.org/DB_HTML/2010/05/2608.html

  9. Dash, S., Dey, S.S., Günlük, O.: Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra (2010), http://www.optimization-online.org/DB_HTML/2010/03/2582.html

  10. Dey, S.S., Wolsey, L.A.: Two row mixed integer cuts via lifting. Mathematical Programming 124, 143–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eisenbrand, F., Schulz, A.S.: Bounds on the Chvátal rank of polytopes in the 0/1-cube. Combinatorica 23, 245–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64, 275–278 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kelley, J.E.: The cutting plane method for solving convex programs. Journal of the SIAM 8, 703–712 (1960)

    MathSciNet  MATH  Google Scholar 

  14. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization 1, 166–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley Interscience, Hoboken (1988)

    Book  MATH  Google Scholar 

  16. Pokutta, S., Schulz, A.S.: Characterization of integer-free 0/1 polytopes with maximal rank, working paper

    Google Scholar 

  17. Pokutta, S., Schulz, A.S.: On the rank of generic cutting-plane proof systems. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 450–463. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Pokutta, S., Stauffer, G.: A new lower bound technique for the Gomory-Chvátal procedure (2010), http://www.optimization-online.org/DB_HTML/2010/09/2748.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dey, S.S., Pokutta, S. (2011). Design and Verify: A New Scheme for Generating Cutting-Planes. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics