Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6655))

Abstract

Which is the minimum number of variables that need branching for a given MIP instance? Can this information be effective in producing compact branching trees, hence improving the performance of a state-of-the-art solver? In this paper we present a restart exact MIP solution scheme where a set covering model is used to find a small set of variables (a “backdoor”, in the terminology of [8]) to be used as first-choice variables for branching. In a preliminary “sampling” phase, our method quickly collects a number of relevant low-cost fractional solutions that qualify as obstacles for LP bound improvement. Then a set covering model is solved to detect a small subset of variables (the backdoor) that “cover the fractionality” of the collected fractional solutions. These backdoor variables are put in a priority branching list, and a black-box MIP solver is eventually run—in its default mode—by taking this list into account, thus avoiding any other interference with its highly-optimized internal mechanisms. Computational results on a large set of instances from MIPLIB 2010 are presented, showing that some speedup can be achieved even with respect to a state-of-the-art solver such as IBM ILOG Cplex 12.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin; Fakultät II - Mathematik und Naturwissenschaften. Institut für Mathematik (2007)

    Google Scholar 

  2. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Operations Research Letters 19, 1–9 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bénichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribière, G., Vincent, O.: Experiments in mixed integer linear programming. Mathematical Programming 1, 76–94 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chvátal, V.: Resolution search. DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research and Computer Science 73 (1997)

    Google Scholar 

  5. Dilkina, B., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M.: Backdoors to Combinatorial Optimization: Feasibility and Optimality. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 56–70. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Karzan, F.K., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branching schemes for binary linear mixed integer problems. Mathematical Programming Computation 1, 249–293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. MIPLIB 2010. Preliminary version, http://miplib.zip.de/

  8. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Gottlob, G., Walsh, T. (eds.) IJCAI 2003: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 1173–1178. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischetti, M., Monaci, M. (2011). Backdoor Branching. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics