Skip to main content

Capacitated Vehicle Routing with Non-uniform Speeds

  • Conference paper
Integer Programming and Combinatoral Optimization (IPCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6655))

Abstract

The capacitated vehicle routing problem (CVRP) [21] involves distributing (identical) items from a depot to a set of demand locations in the shortest possible time, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm.

The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k vehicles having speeds {λ i } i = 1 k, the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated.

The presence of non-uniform speeds introduces difficulties for employing standard tour-splitting techniques. In order to get a better understanding of this technique in our context, we appeal to ideas from the 2-approximation for minimum makespan scheduling in unrelated parallel machines of Lenstra et al. [19]. This motivates the introduction of a new approximate MST construction called Level-Prim, which is related to Light Approximate Shortest-path Trees [18]. The last component of our algorithm involves partitioning the Level-Prim tree and matching the resulting parts to vehicles. This decomposition is more subtle than usual since now we need to enforce correlation between the lengths of the parts and their distances to the depot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations Research Letters 6, 149–158 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Research 24, 294–297 (1990)

    MATH  Google Scholar 

  3. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing problems. Journal of Algorithms 59(1), 1–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication protocols. In: Proceedings of the 9th Annual Symposium on Principles of Distributed Computing, pp. 177–187 (1990)

    Google Scholar 

  6. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward tsp. SIAM J. Comput. 37(2), 653–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bompadre, A., Dror, M., Orlin, J.: Probabilistic Analysis of Unit Demand Vehicle Routing Problems. J. Appl. Probab. 44, 259–278 (2007)

    Article  MATH  Google Scholar 

  8. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. In: Teng, S.-H. (ed.) SODA, pp. 661–670. SIAM, Philadelphia (2008)

    Google Scholar 

  9. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Report 388, Graduate School of Industrial Administration, CMU (1976)

    Google Scholar 

  11. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial optimization. John Wiley & Sons, Inc., New York (1998)

    MATH  Google Scholar 

  12. Das, A., Mathieu, C.: A Quasi-polynomial Time Approximation Scheme for Euclidean Capacitated Vehicle Routing. In: Charikar, M. (ed.) SODA, pp. 390–403. SIAM, Philadelphia (2010)

    Google Scholar 

  13. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  15. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Proceedings of the 34th Annual ACM Symposium on the Theory of Computing, pp. 396–402 (2005)

    Google Scholar 

  16. Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for VRP with Stochastic Demands (2010) (submitted)

    Google Scholar 

  17. Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing problems. Mathematics of Operations Research 10(4), 527–542 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khuller, S., Raghavachari, B., Young, N.E.: Balancing minimum spanning trees and shortest-path trees. Algorithmica 14(4), 305–321 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46, 259–271 (1990), doi:10.1007/BF01585745

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitchell, J.S.B.: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems. SIAM Journal on Computing 28(4), 1298–1309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Toth, P., Vigo, D. (eds.): The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, PA, USA (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gørtz, I.L., Molinaro, M., Nagarajan, V., Ravi, R. (2011). Capacitated Vehicle Routing with Non-uniform Speeds. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics