Skip to main content

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation

  • Conference paper
Integer Programming and Combinatoral Optimization (IPCO 2011)

Abstract

Dantzig-Wolfe decomposition is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs) in practice. However, the method is not implemented in any state-of-the-art MIP solver: it needs tailoring to the particular problem; the decomposition must be determined from the typical bordered block-diagonal matrix structure; the resulting column generation subproblems must be solved efficiently; etc. We provide a computational proof-of-concept that the process can be automated in principle, and that strong dual bounds can be obtained on general MIPs for which a solution by a decomposition has not been the first choice. We perform an extensive computational study on the 0-1 dynamic knapsack problem (without block-diagonal structure) and on general MIPLIB2003 instances. Our results support that Dantzig-Wolfe reformulation may hold more promise as a general-purpose tool than previously acknowledged by the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aykanat, C., Pinar, A., Çatalyürek, Ü.V.: Permuting sparse rectangular matrices into block-diagonal form. SIAM J. Sci. Comput. 25, 1860–1879 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for unsplittable flow on paths. CoRR, abs/1102.3643 (2011)

    Google Scholar 

  4. Caprara, A., Furini, F., Malaguti, E.: Exact algorithms for the temporal knapsack problem. Technical report OR-10-7, DEIS, University of Bologna (2010)

    Google Scholar 

  5. Caprara, A., Malaguti, E., Toth, P.: A freight service design problem for a railway corridor. Tranportation Sci (2011) (in press)

    Google Scholar 

  6. Espinoza, D.G.: Computing with multi-row Gomory cuts. Oper. Res. Lett. 38, 115–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferris, M.C., Horn, J.D.: Partitioning mathematical programs for parallel solution. Math. Program. 80(1), 35–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gamrath, G., Lübbecke, M.E.: Experiments with a generic dantzig-wolfe decomposition for integer programs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 239–252. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Puchinger, J., Stuckey, P.J., Wallace, M.G., Brand, S.: Dantzig-Wolfe decomposition and branch-and-price solving in G12. Constraints 16(1), 77–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ralphs, T.K., Galati, M.V.: DIP – decomposition for integer programming (2009), https://projects.coin-or.org/Dip

  12. Sherali, H.D., Lee, Y., Kim, Y.: Partial convexification cuts for 0-1 mixed-integer programs. European J. Oper. Res. 165(3), 625–648 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tebboth, J.R.: A Computational Study of Dantzig-Wolfe Decomposition. PhD thesis, University of Buckingham (2001)

    Google Scholar 

  14. Vanderbeck, F.: BaPCod – a generic branch-and-price code (2005), https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod

  15. Vanderbeck, F., Wolsey, L.: Reformulation and decomposition of integer programs. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958–2008. Springer, Berlin (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergner, M., Caprara, A., Furini, F., Lübbecke, M.E., Malaguti, E., Traversi, E. (2011). Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics