Skip to main content

Nonlinear Discriminative Embedding for Clustering via Spectral Regularization

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6634))

Included in the following conference series:

  • 1649 Accesses

Abstract

In this paper, we propose a novel nonlinear discriminative dimensionality reduction method for clustering high dimensional data. The proposed method first represents the desired low dimensional nonlinear embedding as linear combinations of predefined smooth vectors with respect to data manifold, which are characterized by a weighted graph. Then the optimal combination coefficients and optimal cluster assignment matrix are computed by maximizing between-cluster scatter and minimizing within-cluster scatter simultaneously as well as preserving smoothness of the cluster assignment matrix with respect to the data manifold. We solve the optimization problem in an iterative algorithm, which is proved to be convergent. The contributions of the proposed method are two folds: 1) obtained nonlinear embedding can recover intrinsic manifold structure as well as enhance the cluster structure of the original data; 2) the cluster results can also be obtained in dimensionality reduction procedure. Extensive experiments conducted on UCI data sets and real world data sets have shown the effectiveness of the proposed method for both clustering and visualization high dimensional data set.

This work is supported by National Natural Science Foundation of China (Grant No. 60970034, 60603015), and the Foundation for Author of National Excellent Doctoral Dissertation(Grant No. 2007B4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolliffe, I.: Principal component analysis. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  3. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  5. Duda, R., Hart, P., Stork, D.: Pattern classification. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  6. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  7. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)

    Article  Google Scholar 

  8. Nie, F., Xu, D., Tsang, I.W., Zhang, C.: Spectral embedded clustering. In: Proceedings of the 21st International Jont Conference on Artifical Intelligence, pp. 1181–1186. Morgan Kaufmann Publishers Inc., San Francisco (2009)

    Google Scholar 

  9. Belkin, M., Niyogi, P.: Semi-supervised learning on riemannian manifolds. Machine Learning 56(1), 209–239 (2004)

    Article  MATH  Google Scholar 

  10. Li, Z., Liu, J., Tang, X.: Constrained clustering via spectral regularization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. IEEE, Los Alamitos (2009)

    Google Scholar 

  11. Zha, H., He, X., Ding, C., Simon, H.: Spectral relaxation for k-means clustering. In: Advances in Neural Information Processing Systems, vol. 2, pp. 1057–1064. MIT Press, Cambridge (2002)

    Google Scholar 

  12. Jianbo, S.Y., Yu, S.X., Shi, J.: Multiclass spectral clustering. In: Proceedings of 9th IEEE International Conference on Computer Vision 2003, pp. 313–319 (2003)

    Google Scholar 

  13. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  14. Ye, J., Zhao, Z., Wu, M.: Discriminative k-means for clustering. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 1649–1656. MIT Press, Cambridge (2008)

    Google Scholar 

  15. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Technical report, Dept. Comput. Sci., Columbia Univ., New York (1996)

    Google Scholar 

  16. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  17. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 1601–1608. MIT Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhan, Y., Yin, J. (2011). Nonlinear Discriminative Embedding for Clustering via Spectral Regularization. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20841-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20841-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20840-9

  • Online ISBN: 978-3-642-20841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics