Skip to main content

A Rule-Based Method for Customer Churn Prediction in Telecommunication Services

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6634))

Included in the following conference series:

Abstract

Rule-based classification methods, which provide the interpretation of a classification, are very useful in churn prediction. However, most of the rule-based methods are not able to provide the prediction probability which is helpful for evaluating customers. This paper proposes a rule induction based classification algorithm, called CRL. CRL applies several heuristic methods to learn a set of rules, and then uses them to predict the customer potential behaviours. The experiments were carried out to evaluate the proposed method, based on 4 datasets of University of California, Irvine(UCI) and one dataset of telecoms. The experimental results show that CRL can achieve high classification accuracy and outperforms the existing rule-based methods in churn prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wei, C., Chiu, I.: Turning telecommunications call details to churn prediction: a data mining approach 23, 103–112 (2002)

    Google Scholar 

  2. Hung, S.-Y., Yen, D.C., Wang, H.-Y.: Applying data mining to telecom churn management. Expert Systems with Applications 31, 515–524 (2006)

    Article  Google Scholar 

  3. Huang, B.Q., Kechadi, M.-T., Buckley, B.: Customer churn prediction for broadband internet services. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 229–243. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Huang, B.Q., Kechadi, M.-T., Buckley, B.: A new feature set with new window techniques for customer churn prediction in land-line telecommunications. Expert Systems with Applications 37, 3657–3665 (2010)

    Article  Google Scholar 

  5. Williams, D., Liao, X., Xue, Y., Carin, L.: Incomplete-data classification using logistic regression. In: ICML, pp. 972–979. ACM Press, New York (2005)

    Google Scholar 

  6. Komarek, P., Moore, A.A.: Logistic regression for data mining and high-dimensional classification. Technical report (2004)

    Google Scholar 

  7. Lemeshow, S., Hosmer, D.W.: Applied logistic regression

    Google Scholar 

  8. Penny, W.D., Roberts, S.J., and London Sw Bt: Bayesian neural networks for classification: How useful is the evidence framework (1998)

    Google Scholar 

  9. Bernatzki, A., Eppler, W., Gemmeke, H.: Interpretation of neural networks for classification tasks. In: Proceedings of EUFIT, pp. 1420–1424 (1996)

    Google Scholar 

  10. Dinggang, S., Yiqiang, Z.: Design efficient support vector machine for fast classification. IEEE Transactions on Neural Neworks 11, 124–136 (2000)

    Article  Google Scholar 

  11. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  12. Ross Quinlan, J.: C4.5: Programs for Machine Learning, 1st edn. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann, San Francisco (January 1993)

    Google Scholar 

  13. Quinlan, J.R.: Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996)

    MATH  Google Scholar 

  14. Du, W., Zhan, Z.: Building decision tree classifier on private data (2002)

    Google Scholar 

  15. Au, W., Chan, C.C., Yao, X.: A novel evolutionary data mining algorithm with applications to churn prediction. IEEE Transactions on Evolutionary Computation 7, 532–545 (2003)

    Article  Google Scholar 

  16. Kelly, J.D.: A hybrid genetic algorithm for classification. In: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, pp. 645–650. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  17. Kwedlo, W., Kretowski, M.: Discovery of decision rules from databases: An evolutionary approach. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 370–378. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Pei, M., Goodman, E.D., Punch Iii, W.F., Ding, Y.: Genetic algorithms for classification and feature extraction. In: Annual Meeting, Classification Society of North America (1995)

    Google Scholar 

  19. Domingos, P.: Rule induction and instance-based learning: A unified approach, pp. 1226–1232. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  20. Domingos, P.: Using partitioning to speed up specific-to-general rule induction. In: Proceedings of the AAAI 1996 Workshop on Integrating Multiple Learned Models, pp. 29–34. AAAI Press, Menlo Park (1996)

    Google Scholar 

  21. Domingos, P.: Efficient specific-to-general rule induction. AAAI Press, Menlo Park (1996)

    Google Scholar 

  22. Clark, P., Niblett, T.: The cn2 induction algorithm. Machine Learning, 261–283 (1989)

    Google Scholar 

  23. Todorovski, L., Flach, P.A., Lavrač, N.: Predictive performance of weighted relative accuracy. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 255–264. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Li, W., Han, J., Pei, J., and Class association Rules: Cmar: Accurate and efficient classification based on multiple class-association rules (2001)

    Google Scholar 

  25. http://archive.ics.uci.edu/ml/datasets.html

  26. http://www.eircom.ie/cgi-bin/bvsm/mainPage.jsp

  27. Vuk, M.: Roc curve, lift chart and calibration plot (2006)

    Google Scholar 

  28. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30, 1145–1159 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, Y., Huang, B., Kechadi, M.T. (2011). A Rule-Based Method for Customer Churn Prediction in Telecommunication Services. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20841-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20841-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20840-9

  • Online ISBN: 978-3-642-20841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics