Skip to main content

Local Feature Based Tensor Kernel for Image Manifold Learning

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6635))

Included in the following conference series:

  • 2490 Accesses

Abstract

In this paper, we propose a tensor kernel on images which are described as set of local features and then apply a novel dimensionality reduction algorithm called Twin Kernel Embedding (TKE) [1] on it for images manifold learning. The local features of the images extracted by some feature extraction methods like SIFT [2] are represented as tuples in the form of coordinates and feature descriptor which are regarded as highly structured data. In [3], different kernels were used for intra and inter images similarity. This is problematic because different kernels refer to different feature spaces and hence they are representing different measures. This heterogeneity embedded in the kernel Gram matrix which was input to a dimensionality reduction algorithm has been transformed to the image embedding space and therefore led to unclear understanding of the embedding. We address this problem by introducing a tensor kernel which treats different sources of information in a uniform kernel framework. The kernel Gram matrix generated by tensor kernel is homogeneous, that is all elements are from the same measurement. Image manifold learned from this kernel is more meaningful. Experiments on image visualization are used to show the effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guo, Y., Gao, J., Kwan, P.W.: Twin kernel embedding. IEEE Transaction of Pattern Analysis and Machine Intelligence 30(8), 1490–1495 (2008)

    Article  Google Scholar 

  2. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  3. Torki, M., Elgammal, A.: Putting local features on a manifold. In: CVPR (2010)

    Google Scholar 

  4. Seung, H., Lee, D.: The manifold ways of perception. Science 290(22), 2268–2269 (2000)

    Article  Google Scholar 

  5. Murase, H., Nayar, S.: Visual learning and recognition of 3D objects from appearance. International Journal of Computer Vision 14, 5–24 (1995)

    Article  Google Scholar 

  6. Swain, M.J., Ballard, D.H.: Indexing via color histograms. In: Proceedings of the International Conference on Computer Vision, pp. 390–393 (1990)

    Google Scholar 

  7. Verma, B., Kulkarni, S.: Texture feature extraction and classification. LNCS, pp. 228–235 (2001)

    Google Scholar 

  8. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)

    Article  Google Scholar 

  9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: Their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  10. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  11. Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Describing visual scenes using transformed objects and parts. International Journal of Computer Vision 77(1-3), 291–330 (2008)

    Article  Google Scholar 

  12. Crammer, K., Kearns, M., Wortman, J.: Learning from multiple sources. Journal of Machine Learning Research 9, 1757–1774 (2008)

    MATH  Google Scholar 

  13. Cesa-Bianchi, N., Hardoon, D.R., Leen, G.: Guest editorial: Learning from multiple sources. Machine Learning 79, 1–3 (2010)

    Article  Google Scholar 

  14. Hardoon, D.R., Shawe-Taylor, J.: Decomposing the tensor kernel support vector machine for neuroscience data with structured labels. Machine Learning 79, 29–46 (2010)

    Article  Google Scholar 

  15. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2002)

    Google Scholar 

  16. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. Journal of Machine Learning Research 6, 615–637 (2005)

    MATH  Google Scholar 

  17. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels for structured data. In: Proceedings of the 12th International Conference on Inductive Logic Programming (2002)

    Google Scholar 

  18. Nabney, I.T.: NETLAB: Algorithms for Pattern Recognition. In: Advances in Pattern Recognition. Springer, London (2004)

    Google Scholar 

  19. Schölkopf, B., Smola, A.J., Müller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  20. Guo, Y., Gao, J., Kwan, P.W.: Kernel laplacian eigenmaps for visualization of non-vectorial data. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1179–1183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M.: Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In: Advances in Neural Information Processing Systems, vol. 16

    Google Scholar 

  22. Guo, Y., Gao, J., Kwan, P.W.: Twin Kernel Embedding with back constraints. In: HPDM in ICDM (2007)

    Google Scholar 

  23. Cuturi, M., Fukumizu, K., Vert, J.P.: Semigroup kernels on measures. Journal of Machine Learning Research 6, 1169–1198 (2005)

    MATH  Google Scholar 

  24. Geiger, A., Urtasun, R., Darrell, T.: Rank priors for continuous non-linear dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 880–887 (2009)

    Google Scholar 

  25. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Y., Gao, J. (2011). Local Feature Based Tensor Kernel for Image Manifold Learning. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20847-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20847-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20846-1

  • Online ISBN: 978-3-642-20847-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics