Skip to main content

NEXP Does Not Have Non-uniform Quasipolynomial-Size ACC Circuits of o(loglogn) Depth

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6648))

Abstract

ACC m circuits are circuits consisting of unbounded fan-in AND, OR and MOD m gates and unary NOT gates, where m is a fixed integer. We show that there exists a language in non-deterministic exponential time which can not be computed by any non-uniform family of ACC m circuits of quasipolynomial size and o(log log n) depth, where m is an arbitrarily chosen constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E.: The permanent requires large uniform threshold circuits. Chicago J. Theor. Comput. Sci. (1999)

    Google Scholar 

  2. Allender, E., Gore, V.: A uniform circuit lower bound for the permanent. SIAM Journal on Computing 23(5), 1026–1049 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arora, S., Barak, B.: Computational Complexity, a modern approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Barrington, D.A.M.: Quasipolynomial size circuit classes. In: Proc. IEEE Conf. on Structure in Complexity Theory, pp. 86–93 (1992)

    Google Scholar 

  5. Beame, P., Håstad, J.: Optimal bounds for decision problems on the crcw pram. Journal of the ACM 36(3), 643–670 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beigel, R.: When do extra majority gates help? polylog() majority gates are equivalent to one. Computational Complexity 4, 314–324 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beigel, R., Tarui, J.: On ACC. Computational Complexity 4, 350–366 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beigel, R., Tarui, J., Toda, S.: On probabilistic acc circuits with an exact-threshold output gate. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 420–429. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  9. Fortnow, L., Santhanam, R.: Robust simulations and significant separations, http://arxiv.org/abs/1012.2034 (manuscript)

  10. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 6–20 (1986)

    Google Scholar 

  11. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences 65(4), 672–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koiran, P., Perifel, S.: A superpolynomial lower bound on the size of uniform non-constant-depth threshold circuits for the permanent. Computational Complexity, 35–40 (2009)

    Google Scholar 

  13. Razborov, A.: Lower bounds on the size of bounded-depth networks over a complete basis with logical addition. Mathematical Notes of the Academy of Sciences. of the USSR 41(4), 333–338 (1987)

    Article  MATH  Google Scholar 

  14. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 77–82 (1987)

    Google Scholar 

  15. Vollmer, H.: Introduction to Circuit Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  16. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 231–240 (2010)

    Google Scholar 

  17. Williams, R.: Non-uniform ACC circuit lower bounds. In: Proc. IEEE Conf. on Computational Complexity (2010), http://www.cs.cmu.edu/~ryanw/acc-lbs.pdf

  18. Yao, A.C.-C.: On ACC and threshold circuits. In: Proc. IEEE Symp. on Found. of Comp. Sci (FOCS), pp. 619–627 (1990)

    Google Scholar 

  19. Zak, S.: A turing machine hierarchy. Theoretical Computer Science 26, 327–333 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, F. (2011). NEXP Does Not Have Non-uniform Quasipolynomial-Size ACC Circuits of o(loglogn) Depth. In: Ogihara, M., Tarui, J. (eds) Theory and Applications of Models of Computation. TAMC 2011. Lecture Notes in Computer Science, vol 6648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20877-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20877-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20876-8

  • Online ISBN: 978-3-642-20877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics