Skip to main content

How to Cut a Graph into Many Pieces

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6648))

Abstract

In this paper we consider the problem of finding a graph separator of a given size that decomposes the graph into the maximum number of connected components. We present the picture of the computational complexity and the approximability of this problem for several natural classes of graphs.

We first provide an overview of the hardness of approximation of this problem, which stems mainly from its close relation to the Independent Set and to the Maximum Clique problem. Next, we show that the problem is solvable in polynomial time for interval graphs and graphs of bounded treewidth. We also show that MaxiNum Components is fixed-parameter tractable on planar graphs with the size of the separator as the parameter. Our main contribution is the derivation of an efficient polynomial-time approximation scheme for the problem on planar graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for graphs with an excluded minor and its applications. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 293–299. ACM, New York (1990)

    Google Scholar 

  2. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of np-hard problems. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 284–293 (1995)

    Google Scholar 

  3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41(1), 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barefoot, C., Entringer, R., Swart, H.: Integrity of trees and the diameter of a graphs. Congressus Numerantium (58), 103–114 (1987)

    Google Scholar 

  5. Barefoot, C., Entringer, R., Swart, H.: Vulnerability in graphs:a comparative survey. Journal of Combinatorial Mathematics and Combinatorial Computing (1), 12–22 (1987)

    Google Scholar 

  6. Bodlaender, H.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H., Hendriks, A., Grigoriev, A., Grigorieva, N.: The valve location problem in simple network topologies. INFORMS Journal on Computing (to appear)

    Google Scholar 

  8. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem. Algorithmica 55(1), 1–13 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Costa, M., Létocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: A survey. European Journal of Operational Research 162, 55–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Călinescu, G., Fernandes, C., Reed, B.: Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. Journal of Algorithms 48(4), 333–359 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway cut. Journal of Computer and System Sciences 60(3), 564–574 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feige, U., Mahdian, M.: Finding small balanced separators. In: Kleinberg, J. (ed.) Proceedings of the 38th Annual ACM Symposium on Theory of Computing, STOC, Seattle, WA, USA, May 21-23, pp. 375–384 (2006)

    Google Scholar 

  16. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  17. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garg, N., Vazirani, V., Yannakakis, M.: Multiway cuts in node weighted graphs. Journal of Algorithms 50(1), 49–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goldschmidt, O., Hochbaum, D.: Polynomial algorithm for the k-cut problem. In: 29th Annual Symposium on Foundations of Computer Science, pp. 24–26, 444–451 (1988)

    Google Scholar 

  20. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and exact algorithms for vertex multicut in interval and bounded treewidth graphs. European Journal of Operational Research 186(2), 542–555 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guttmann-Beck, N., Hassin, R.: Approximation algorithms for minimum -cut. Algorithmica 27(2), 198–207 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hajiaghayi, M.T., Hajiaghayi, M.: A note on the bounded fragmentation property and its applications in network reliability. European Journal of Combinatorics 24(7), 891–896 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kann, V., Khanna, S., Lagergren, J., Panconesi, A.: On the hardness of approximating max k-cut and its dual. Chicago Journal of Theoretical Computer Science - CJTCS-1997-2 (1997)

    Google Scholar 

  25. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM Journal on Computing 36(4), 1025–1071 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kloks, T.: Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  27. Marx, D.: Parameterized graph separation problems. Theoretical Computer Science 351, 394–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saran, H., Vazirani, V.: Finding k cuts within twice the optimal. SIAM Journal on Computing 24(1), 101–108 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, M.: Simple and Improved Parameterized Algorithms for Multiterminal Cuts. Theory of Computing Systems 46(7), 723–736 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Kleinberg, J.M. (ed.) Proceedings of the Thirty-Eight Annual ACM Symposium on Theory of Computing, pp. 681–690. ACM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Zwaan, R., Berger, A., Grigoriev, A. (2011). How to Cut a Graph into Many Pieces. In: Ogihara, M., Tarui, J. (eds) Theory and Applications of Models of Computation. TAMC 2011. Lecture Notes in Computer Science, vol 6648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20877-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20877-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20876-8

  • Online ISBN: 978-3-642-20877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics