Skip to main content

Contingency-Based Equilibrium Logic

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6645))

Abstract

We investigate an alternative language for equilibrium logic that is based on the concept of positive and negative contingency. Beyond these two concepts our language has the modal operators of necessity and impossibility and the Boolean operators of conjunction and disjunction. Neither negation nor implication are available. Our language is just as expressive as the standard language of equilibrium logic (that is based on conjunction and intuitionistic implication).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chellas, B.: Modal logic: An introduction. Cambridge University Press, Cambridge (1980)

    Book  MATH  Google Scholar 

  2. Došen, K.: Models for stronger normal intuitionistic modal logics. Studia Logica 44, 39–70 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fariñas del Cerro, L., Raggio, A.: Some results in intuitionistic modal logic. Logique et Analyse 26(102), 219–224 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Fariñas del Cerro, L., Herzig, A.: Combining classical and intuitionistic logic, or: intuitionistic implication as a conditional. In: Baader, F., Schulz, K.U. (eds.) Frontiers in Combining Systems. Applied Logic Series, vol. 3, pp. 93–102. Kluwer Academic Publishers, Dordrecht (1996)

    Chapter  Google Scholar 

  5. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsber. Preuss. Akad. Wiss. 42-71, 158–169 (1930)

    MATH  Google Scholar 

  6. Hughes, G.E., Cresswell, M.J.: An introduction to modal logic. Methuen&Co. Ltd., London (1968)

    MATH  Google Scholar 

  7. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Vakarelov, D.: Notes on constructive logic with strong negation. Studia Logica 36, 110–125 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fariñas del Cerro, L., Herzig, A. (2011). Contingency-Based Equilibrium Logic. In: Delgrande, J.P., Faber, W. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2011. Lecture Notes in Computer Science(), vol 6645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20895-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20895-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20894-2

  • Online ISBN: 978-3-642-20895-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics