Abstract
We present the state of the art solvers of the Shortest and Closest Lattice Vector Problems in the Euclidean norm. We recall the three main families of algorithms for these problems, namely the algorithm by Micciancio and Voulgaris based on the Voronoi cell [STOC’10], the Monte-Carlo algorithms derived from the Ajtai, Kumar and Sivakumar algorithm [STOC’01] and the enumeration algorithms originally elaborated by Kannan [STOC’83] and Fincke and Pohst [EUROCAL’83]. We concentrate on the theoretical worst-case complexity bounds, but also consider some practical facets of these algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Transactions on Information Theory 48(8), 2201–2214 (2002)
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proc. of STOC, pp. 99–108. ACM, New York (1996)
Ajtai, M.: The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero vector in a lattice. In: Proc. of STOC, pp. 396–406. ACM, New York (2003)
Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proc. of STOC, pp. 284–293. ACM, New York (1997)
Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proc. of STOC, pp. 601–610. ACM, New York (2001)
Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: Proc. of CCC, pp. 53–57 (2002)
Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986)
Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625–635 (1993)
Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and successive minima. Theor. Comput. Science 410(18), 1648–1665 (2009)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. Journal of Symbolic Computation 24(3-4), 235–265 (1997), http://magma.maths.usyd.edu.au/magma/
Buchmann, J.: Reducing Lattice Bases by Means of Approximations. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 160–168. Springer, Heidelberg (1994)
Cadé, D., Pujol, X., Stehlé, D.: fplll-3.1, a floating-point LLL implementation, http://perso.ens-lyon.fr/damien.stehle
Cassels, J.W.S.: An Introduction to the Geometry of Numbers, 2nd edn. Springer, Heidelberg (1971)
Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, Heidelberg (1998)
Dadush, D., Peikert, C., Vempala, S.: Enumerative algorithms for the shortest and closest lattice vector problems in any norm via M-ellipsoid coverings (submitted 2011)
Detrey, J., Hanrot, G., Pujol, X., Stehlé, D.: Accelerating lattice reduction with fPGAs. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 124–143. Springer, Heidelberg (2010)
Eisenbrand, F.: Integer Programming and Algorithmic Geometry of Numbers. In: 50 Years of Integer Programming 1958-2008, From the Early Years to the State-of-the-Art. Springer, Heidelberg (2009)
Eisenbrand, F., Hähnle, N., Niemeier, M.: Covering cubes and the closest vector problem. To appear in the Proceedings of SoCG (2011)
van Emde Boas, P.: Another NP-complete partition problem and the complexity of computing short vectors in a lattice. Technical report 81-04, Mathematisch Instituut, Universiteit van Amsterdam (1981)
Fincke, U., Pohst, M.: A procedure for determining algebraic integers of given norm. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 194–202. Springer, Heidelberg (1983)
Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. 44(170), 463–471 (1985)
Gama, N., Howgrave-Graham, N., Koy, H., Nguyên, P.Q.: Rankin’s constant and blockwise lattice reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 112–130. Springer, Heidelberg (2006)
Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: Proc. of STOC, pp. 207–216. ACM, New York (2008)
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)
Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010)
Gama, N., Schneider, M.: The SVP challenge homepage, http://www.latticechallenge.org/svp-challenge/
Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)
Goldreich, O., Micciancio, D., Safra, S., Seifert, J.-P.: Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Process. Lett. 71(2), 55–61 (1999)
Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Mathematicum 15, 165–189 (2003)
Gruber, M., Lekkerkerker, C.G.: Geometry of Numbers. North-Holland, Amsterdam (1987)
Guruswami, V., Micciancio, D., Regev, O.: The complexity of the covering radius problem. Computational Complexity 14(2), 90–121 (2005)
Hanrot, G., Stehlé, D.: Improved analysis of kannan’s shortest lattice vector algorithm (extended abstract). In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186. Springer, Heidelberg (2007)
Hanrot, G., Stehlé, D.: Worst-case Hermite-Korkine-Zolotarev reduced lattice bases. CoRR, abs/0801.3331 (2008)
Hassibi, A., Boyd, S.: Integer parameter estimation in linear models with applications to GPS. IEEE Transactions on Signal Process 46(11), 2938–2952 (1998)
Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In: Proc. of STOC, pp. 469–477. ACM, New York (2007)
Helfrich, B.: Algorithms to construct Minkowski reduced and Hermite reduced lattice bases. Theor. Comput. Science 41, 125–139 (1985)
Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel shortest lattice vector enumeration on graphics cards. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 52–68. Springer, Heidelberg (2010)
Hermite, C.: Œuvres. Gauthiers-Villars (1905)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)
Horváth, Á.G.: On the Dirichlet-Voronoi cells of the unimodular lattices. Geometricæ Dedicata 63, 183–191 (1996)
Kabatyansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space. Probl. Peredachi Inf. 14(1), 3–25 (1978)
Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Proc. of STOC, pp. 99–108. ACM, New York (1983)
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)
Khot, S.: Inapproximability results for computational problems on lattices. Chapter of [64]
Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: Proc. of SODA, pp. 937–941. ACM, New York (2000)
Korkine, A., Zolotarev, G.: Sur les formes quadratiques. Math. Ann. 6, 336–389 (1873)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)
Lenstra Jr., H.: Lattices. In: Buhler, J.P., Stevenhagen, P. (eds.) Algorithmic Number Theory, pp. 127–181. MSRI Publications, Cambridge University Press (2008)
Lindner, R., Rückert, M.: The lattice challenge homepage, http://www.latticechallenge.org/
Liu, Y.-K., Lyubashevsky, V., Micciancio, D.: On bounded distance decoding for general lattices. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 450–461. Springer, Heidelberg (2006)
Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)
Martinet, J.: Perfect Lattices in Euclidean Spaces. Springer, Heidelberg (2002)
Micciancio, D.: Efficient reductions among lattice problems. In: Proc. of SODA, pp. 84–93. SIAM, Philadelphia (2008)
Micciancio, D., Goldwasser, S.: Complexity of lattice problems : a cryptographic perspective. Kluwer Academic Press, Dordrecht (2002)
Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)
Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations, Draft of the full version of [57] (December 8, 2010), http://cseweb.ucsd.edu/~pvoulgar/pub.html
Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. In: Proc. of STOC, pp. 351–358. ACM, New York (2010)
Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In: Proc. of SODA, ACM, New York (2010)
Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag, Stuttgart (1896)
Mow, W.H.: Maximum likelihood sequence estimation from the lattice viewpoint. IEEE Transactions on Information Theory 40, 1591–1600 (1994)
Mow, W.H.: Universal lattice decoding: Principle and recent advances. Wireless Communications and Mobile Computing, Special Issue on Coding and Its Applications in Wireless CDMA Systems 3(5), 553–569 (2003)
P. Q. Nguyen. Hermite’s constant and lattice algorithms. Chapter of [64].
Nguyên, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)
Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applications. Information Security and Cryptography. Springer, Heidelberg (2009)
Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology 2(2) (2008)
Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Cryptology and Computational Number Theory. Proc. of Symposia in Applied Mathematics, vol. 42, pp. 75–88. A.M.S, Providence (1990)
Pujol, X., Stehlé, D.: Rigorous and efficient short lattice vectors enumeration. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 390–405. Springer, Heidelberg (2008)
Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time 22.465n. Cryptology ePrint Archive (2009), http://eprint.iacr.org/2009/605
Regev, O.: Lecture notes of lattices in computer science, taught at the Computer Science Tel Aviv University, http://www.cs.tau.il/~odedr
O. Regev. On the complexity of lattice problems with polynomial approximation factors. Chapter of [64].
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. of STOC, pp. 84–93. ACM, New York (2005)
Regev, O.: The learning with errors problem, Invited survey in CCC 2010 (2010), http://www.cs.tau.ac.il/~odedr/
C. P. Schnorr. Progress on LLL and lattice reduction. Chapter of [64].
Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theor. Comput. Science 53, 201–224 (1987)
Schnorr, C.P., Euchner, M.: Lattice basis reduction : improved practical algorithms and solving subset sum problems. Mathematics of Programming 66, 181–199 (1994)
Schnorr, C.-P., Hörner, H.H.: Attacking the chor-rivest cryptosystem by improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)
Shoup, V.: NTL, Number Theory C++ Library, http://www.shoup.net/ntl/
Siegel, C.L.: Lectures on the Geometry of Numbers. Springer, Heidelberg (1989)
Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by iterative slicing. SIAM J. Discrete Math. 23(2), 715–731 (2009)
Stehlé, D., Watkins, M.: On the extremality of an 80-dimensional lattice. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 340–356. Springer, Heidelberg (2010)
Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die reine und angewandte Mathematik 134, 198–287 (1908)
Voulgaris, P.: Personal communication
Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve algorithm for shortest vector problem. Cryptology ePrint Archive (2010), http://eprint.iacr.org/2010/647
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hanrot, G., Pujol, X., Stehlé, D. (2011). Algorithms for the Shortest and Closest Lattice Vector Problems. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-20901-7_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20900-0
Online ISBN: 978-3-642-20901-7
eBook Packages: Computer ScienceComputer Science (R0)