Abstract
Locally decodable codes are error correcting codes that simultaneously provide efficient random-access to encoded data and high noise resilience by allowing reliable reconstruction of an arbitrary data bit from looking at only a small number of randomly chosen codeword bits. Local decodability comes at the price of certain loss in terms of code efficiency. Specifically, locally decodable codes require longer codeword lengths than their classical counterparts. In this work we briefly survey the recent progress in constructions of locally decodable codes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Aroya, A., Efremenko, K., Ta-Shma, A.: Local list decoding with a constant number of queries. In: 51st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 715–722 (2010)
Ben-Aroya, A., Efremenko, K., Ta-Shma, A.: A note on amplifying the error-tolerance of locally decodable codes. In: Electronic Colloquium on Computational Complexity (ECCC), TR10-134 (2010)
Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 37–48. Springer, Heidelberg (1990)
Dvir, Z., Gopalan, P., Yekhanin, S.: Matching vector codes. In: 51st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 705–714 (2010)
Efremenko, K.: 3-query locally decodable codes of subexponential length. In: 41st ACM Symposium on Theory of Computing (STOC), pp. 39–44 (2009)
Grolmusz, V.: Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica 20, 71–86 (2000)
Itoh, T., Suzuki, Y.: New constructions for query-efficient locally decodable codes of subexponential length. IEICE Transactions on Information and Systems, 263–270 (2010)
Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding. In: 43nd ACM Symposium on Theory of Computing, STOC (2011)
Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: 32nd ACM Symposium on Theory of Computing (STOC), pp. 80–86 (2000)
Lipton, R.: Efficient checking of computations. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 207–215. Springer, Heidelberg (1990)
Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1983)
Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.: Query-efficient locally decodable codes of subexponential length. In: Electronic Colloquium on Computational Complexity (ECCC), TR10-173 (2010)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam
Muller, D.E.: Application of boolean algebra to switching circuit design and to error detection. IEEE Transactions on Computers 3, 6–12 (1954)
Raghavendra, P.: A note on Yekhanin’s locally decodable codes. In: Electronic Colloquium on Computational Complexity (ECCC), TR07-016 (2007)
Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme. IEEE Transactions on Information Theory 4, 38–49 (1954)
Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. In: 39th ACM Symposium on Theory of Computing (STOC), pp. 537–546 (1999)
Saraf, S., Yekhanin, S.: Noisy interpolation of sparse polynomials, and applications. In: 29th IEEE Computational Complexity Conference, CCC (2011)
Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. Journal of the ACM 55, 1–16 (2008)
Yekhanin, S.: Locally decodable codes. Foundations and trends in Theoretical Computer Science (2010, to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yekhanin, S. (2011). Locally Decodable Codes: A Brief Survey. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-20901-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20900-0
Online ISBN: 978-3-642-20901-7
eBook Packages: Computer ScienceComputer Science (R0)