Skip to main content

List Decoding for Binary Goppa Codes

  • Conference paper
Coding and Cryptology (IWCC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6639))

Included in the following conference series:

  • 2108 Accesses

Abstract

This paper presents a Patterson-style list-decoding algorithm for classical irreducible binary Goppa codes. The algorithm corrects, in polynomial time, approximately \(n-\sqrt{n(n-2t-2)}\) errors in a length-n classical irreducible degree-t binary Goppa code. Compared to the best previous polynomial-time list-decoding algorithms for the same codes, the new algorithm corrects approximately \(t^2\!/2n\) extra errors.

Permanent ID of this document: 210ecf064c479a278ab2c98c379f72e0. Date of this document: 2011.03.02. This work was carried out while the author was visiting Technische Universiteit Eindhoven. This work has been supported in part by the National Science Foundation under grant ITR–0716498 and in part by the Cisco University Research Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Proceedings of the 32nd Annual ACM Symposium on Theory of Computing. ACM, New York (2000), ISBN 1-58113-184-4, See [8]

    Google Scholar 

  2. Augot, D., Barbier, M., Couvreur, A.: List-decoding of binary Goppa codes up to the binary Johnson bound, http://arxiv.org/abs/1012.3439 , Citations in this document: §1

  3. Avanzi, R.M.: A study on polynomials in separated variables with low genus factors, Ph.D. thesis, Universität Essen (2001), http://caccioppoli.mac.rub.de/website/papers/phdthesis.pdf , Citations in this document: §6

  4. Bernstein, D.J.: Fast multiplication and its applications. In: [11], pp. 325–384 (2008), http://cr.yp.to/papers.html#multapps , Citations in this document: §1

  5. Bernstein, D.J.: Reducing lattice bases to find small-height values of univariate polynomials. In: [11], pp. 421–446 (2008), http://cr.yp.to/papers.html#smallheight , Citations in this document: §3, §3, §3, §3, §7

  6. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: [10], pp. 31–46 (2008), http://cr.yp.to/papers.html#mceliece , Citations in this document: §1, §4

  7. Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 143–158. Springer, Heidelberg (2011), Citations in this document: x1, x4

    Chapter  Google Scholar 

  8. Boneh, D.: Finding smooth integers in short intervals using CRT decoding. In: [1], pp. 265–272 (2000); see also newer version [9], Citations in this document: §2

    Google Scholar 

  9. Boneh, D.: Finding smooth integers in short intervals using CRT decoding. Journal of Computer and System Sciences 64, 768–784 (2002), http://crypto.stanford.edu/~dabo/abstracts/CRTdecode.html ; see also older version [8], ISSN 0022-0000, MR 1 912 302

  10. Buchmann, J., Ding, J. (eds.): PQCrypto 2008. LNCS, vol. 5299. Springer, Heidelberg (2008), See [6]

    MATH  Google Scholar 

  11. Buhler, J.P., Stevenhagen, P. (eds.): Surveys in algorithmic number theory. Mathematical Sciences Research Institute Publications, vol. 44. Cambridge University Press, New York (2008), See [4], [5]

    Google Scholar 

  12. Castagnos, G., Joux, A., Laguillaumie, F., Nguyen, P.Q.: Factoring pq2 with quadratic forms: nice cryptanalyses. In: [23], pp. 469–486 (2009), Citations in this document: x3

    Google Scholar 

  13. Cohn, H., Heninger, N.: Ideal forms of Coppersmith’s theorem and Guruswami-Sudan list decoding (2010), http://arxiv.org/abs/1008.1284 , Citations in this document: §3

  14. Coppersmith, D., Howgrave-Graham, N., Nagaraj, S.V.: Divisors in residue classes, constructively (2004), http://eprint.iacr.org/2004/339 , see also newer version [15]

  15. Coppersmith, D., Howgrave-Graham, N., Nagaraj, S.V.: Divisors in residue classes, constructively. Mathematics of Computation 77, 531–545 (2008); see also older version [15], Citations in this document: §2

    Google Scholar 

  16. Graham, R.L., NeÅ¡etÅ™il, J. (eds.): The mathematics of Paul Erdös. I. Algorithms and Combinatorics, vol. 13. Springer, Berlin (1997), ISBN 3-540-61032-4, MR 97f:00032, See [20]

    Google Scholar 

  17. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Transactions on Information Theory 45, 1757–1767 (1999), http://theory.lcs.mit.edu/~madhu/bib.html , ISSN 0018-9448, MR 2000j:94033, Citations in this document: §1, §1

  18. Guruswami, V.: List decoding of error-correcting codes, Ph.D. thesis, Massachusetts Institute of Technology (2001), Citations in this document: §1

    Google Scholar 

  19. Howgrave-Graham, N.: Computational mathematics inspired by RSA, Ph.D. thesis (1998), http://cr.yp.to/bib/entries.html#1998/howgrave-graham , Citations in this document: §2

  20. Konyagin, S., Pomerance, C.: On primes recognizable in deterministic polynomial time. In: [16], pp. 176–198 (1997), http://cr.yp.to/bib/entries.html#1997/konyagin , MR 98a:11184, Citations in this document: §2

  21. Lenstra, A.K.: Factoring multivariate polynomials over finite fields. Journal of Computer and System Sciences 30, 235–248 (1985), MR 87a:11124, Citations in this document: §2

    Google Scholar 

  22. Lenstra Jr., H.W.: Divisors in residue classes. Mathematics of Computation 42, 331–340 (1984), http://www.jstor.org/sici?sici=0025-5718(198401)42:165<331:DIRC>2.0.CO;2-6,ISSN 0025-5718, MR 85b:11118, Citations in this document: §2

    Google Scholar 

  23. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009), See [12]

    MATH  Google Scholar 

  24. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report, 114–116 (1978), http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF , Citations in this document: §1

  25. Mulders, T., Storjohann, A.: On lattice reduction for polynomial matrices. Journal of Symbolic Computation 35, 377–401 (2003), Citations in this document: §2

    Article  MathSciNet  MATH  Google Scholar 

  26. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15, 159–166 (1986), Citations in this document: §1

    Google Scholar 

  27. Patterson, N.J.: The algebraic decoding of Goppa codes. IEEE Transactions on Information Theory 21, 203–207 (1975), Citations in this document: §1

    Google Scholar 

  28. Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: Further results on Goppa codes and their applications to constructing efficient binary codes. IEEE Transactions on Information Theory 22, 518–526 (1976), Citations in this document: §1, §1

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, Y.: New list decoding algorithms for Reed–Solomon and BCH codes. IEEE Transactions On Information Theory 54 (2008), http://arxiv.org/abs/cs/0703105 , Citations in this document: §1

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernstein, D.J. (2011). List Decoding for Binary Goppa Codes. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20901-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20900-0

  • Online ISBN: 978-3-642-20901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics