Abstract
This paper presents a Patterson-style list-decoding algorithm for classical irreducible binary Goppa codes. The algorithm corrects, in polynomial time, approximately \(n-\sqrt{n(n-2t-2)}\) errors in a length-n classical irreducible degree-t binary Goppa code. Compared to the best previous polynomial-time list-decoding algorithms for the same codes, the new algorithm corrects approximately \(t^2\!/2n\) extra errors.
Permanent ID of this document: 210ecf064c479a278ab2c98c379f72e0. Date of this document: 2011.03.02. This work was carried out while the author was visiting Technische Universiteit Eindhoven. This work has been supported in part by the National Science Foundation under grant ITR–0716498 and in part by the Cisco University Research Program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing. ACM, New York (2000), ISBN 1-58113-184-4, See [8]
Augot, D., Barbier, M., Couvreur, A.: List-decoding of binary Goppa codes up to the binary Johnson bound, http://arxiv.org/abs/1012.3439 , Citations in this document: §1
Avanzi, R.M.: A study on polynomials in separated variables with low genus factors, Ph.D. thesis, Universität Essen (2001), http://caccioppoli.mac.rub.de/website/papers/phdthesis.pdf , Citations in this document: §6
Bernstein, D.J.: Fast multiplication and its applications. In: [11], pp. 325–384 (2008), http://cr.yp.to/papers.html#multapps , Citations in this document: §1
Bernstein, D.J.: Reducing lattice bases to find small-height values of univariate polynomials. In: [11], pp. 421–446 (2008), http://cr.yp.to/papers.html#smallheight , Citations in this document: §3, §3, §3, §3, §7
Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: [10], pp. 31–46 (2008), http://cr.yp.to/papers.html#mceliece , Citations in this document: §1, §4
Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 143–158. Springer, Heidelberg (2011), Citations in this document: x1, x4
Boneh, D.: Finding smooth integers in short intervals using CRT decoding. In: [1], pp. 265–272 (2000); see also newer version [9], Citations in this document: §2
Boneh, D.: Finding smooth integers in short intervals using CRT decoding. Journal of Computer and System Sciences 64, 768–784 (2002), http://crypto.stanford.edu/~dabo/abstracts/CRTdecode.html ; see also older version [8], ISSN 0022-0000, MR 1 912 302
Buchmann, J., Ding, J. (eds.): PQCrypto 2008. LNCS, vol. 5299. Springer, Heidelberg (2008), See [6]
Buhler, J.P., Stevenhagen, P. (eds.): Surveys in algorithmic number theory. Mathematical Sciences Research Institute Publications, vol. 44. Cambridge University Press, New York (2008), See [4], [5]
Castagnos, G., Joux, A., Laguillaumie, F., Nguyen, P.Q.: Factoring pq2 with quadratic forms: nice cryptanalyses. In: [23], pp. 469–486 (2009), Citations in this document: x3
Cohn, H., Heninger, N.: Ideal forms of Coppersmith’s theorem and Guruswami-Sudan list decoding (2010), http://arxiv.org/abs/1008.1284 , Citations in this document: §3
Coppersmith, D., Howgrave-Graham, N., Nagaraj, S.V.: Divisors in residue classes, constructively (2004), http://eprint.iacr.org/2004/339 , see also newer version [15]
Coppersmith, D., Howgrave-Graham, N., Nagaraj, S.V.: Divisors in residue classes, constructively. Mathematics of Computation 77, 531–545 (2008); see also older version [15], Citations in this document: §2
Graham, R.L., Nešetřil, J. (eds.): The mathematics of Paul Erdös. I. Algorithms and Combinatorics, vol. 13. Springer, Berlin (1997), ISBN 3-540-61032-4, MR 97f:00032, See [20]
Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Transactions on Information Theory 45, 1757–1767 (1999), http://theory.lcs.mit.edu/~madhu/bib.html , ISSN 0018-9448, MR 2000j:94033, Citations in this document: §1, §1
Guruswami, V.: List decoding of error-correcting codes, Ph.D. thesis, Massachusetts Institute of Technology (2001), Citations in this document: §1
Howgrave-Graham, N.: Computational mathematics inspired by RSA, Ph.D. thesis (1998), http://cr.yp.to/bib/entries.html#1998/howgrave-graham , Citations in this document: §2
Konyagin, S., Pomerance, C.: On primes recognizable in deterministic polynomial time. In: [16], pp. 176–198 (1997), http://cr.yp.to/bib/entries.html#1997/konyagin , MR 98a:11184, Citations in this document: §2
Lenstra, A.K.: Factoring multivariate polynomials over finite fields. Journal of Computer and System Sciences 30, 235–248 (1985), MR 87a:11124, Citations in this document: §2
Lenstra Jr., H.W.: Divisors in residue classes. Mathematics of Computation 42, 331–340 (1984), http://www.jstor.org/sici?sici=0025-5718(198401)42:165<331:DIRC>2.0.CO;2-6,ISSN 0025-5718, MR 85b:11118, Citations in this document: §2
Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009), See [12]
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report, 114–116 (1978), http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF , Citations in this document: §1
Mulders, T., Storjohann, A.: On lattice reduction for polynomial matrices. Journal of Symbolic Computation 35, 377–401 (2003), Citations in this document: §2
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15, 159–166 (1986), Citations in this document: §1
Patterson, N.J.: The algebraic decoding of Goppa codes. IEEE Transactions on Information Theory 21, 203–207 (1975), Citations in this document: §1
Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: Further results on Goppa codes and their applications to constructing efficient binary codes. IEEE Transactions on Information Theory 22, 518–526 (1976), Citations in this document: §1, §1
Wu, Y.: New list decoding algorithms for Reed–Solomon and BCH codes. IEEE Transactions On Information Theory 54 (2008), http://arxiv.org/abs/cs/0703105 , Citations in this document: §1
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bernstein, D.J. (2011). List Decoding for Binary Goppa Codes. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-20901-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20900-0
Online ISBN: 978-3-642-20901-7
eBook Packages: Computer ScienceComputer Science (R0)