Abstract
In the problem of Secure Message Transmission in the public discussion model (SMT-PD), a Sender wants to send a message to a Receiver privately and reliably. Sender and Receiver are connected by n channels, up to t < n of which may be maliciously controlled by a computationally unbounded adversary, as well as one public channel, which is reliable but not private. The SMT-PD abstraction has been shown instrumental in achieving secure multi-party computation on sparse networks, where a subset of the nodes are able to realize a broadcast functionality, which plays the role of the public channel.
In this short survey paper, after formally defining the SMT-PD problem, we overview the basic constructions starting with the first, rather communication-inefficient solutions to the problem, and ending with the most efficient solutions known to-date—optimal private communication and sublinear public communication.
These complexities refer to resource use for a single execution of an SMT-PD protocol. We also review the amortized complexity of the problem, which would arise in natural use-case scenarios where \(\mathcal{S}\) and \(\mathcal{R}\) must send several messages back and forth, where later messages depend on earlier ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006)
Bennett, C.H., Brassard, G., Crèpeau, C., Maurer, U.: Generalized privacy amplification. IEEE Transactions on Information Theory 41(6), 1015–1923 (1995)
Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. Siam Journal of Computing 17(2) (1988)
Berman, P., Garay, J.: Fast consensus in networks of bounded degree. Distributed Computing 2(7), 62–73 (1991); Preliminary version in WDAG 1990
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)
Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: STOC, pp. 11–19 (1988)
Chandran, N., Garay, J., Ostrovsky, R.: Improved fault tolerance and secure computation on sparse networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 249–260. Springer, Heidelberg (2010)
Choudhary, A., Patra, A., Pandu Rangan, C., Srinathan, K.: Unconditionally reliable and secure message transmission in undirected synchronous networks: Possibility, feasibility and optimality. Cryptology ePrint Archive, Report 2008/141 (2008)
Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. Journal of ACM 1(40), 17–47 (1993)
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. (2008)
Dwork, C., Peleg, D., Pippinger, N., Upfal, E.: Fault tolerance in networks of bounded degree. In: STOC, pp. 370–379 (1986)
Fitzi, M., Franklin, M.K., Garay, J.A., Vardhan, S.H.: Towards optimal and efficient perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 311–322. Springer, Heidelberg (2007)
Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzantine agreement. SIAM J. Comput. 26(4), 873–933 (1997)
Franklin, M., Wright, R.: Secure communication in minimal connectivity models. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 346–360. Springer, Heidelberg (1998)
Garay, J.A.: Partially connected networks: Information theoretically secure protocols and open problems (Invited talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, p. 1. Springer, Heidelberg (2008)
Garay, J., Givens, C., Ostrovsky, R.: Secure message transmission with small public discussion. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 177–196. Springer, Heidelberg (2010); Full version in Cryptology ePrint Archive, Report 2009/519
Garay, J., Moses, Y.: Fully polynomial Byzantine agreement for n > 3t processors in t + 1 rounds. SIAM J. Comput. 27(1), 247–290 (1998); Prelim. in STOC 1992
Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg (2008)
Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006)
Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmission scheme. Cryptology ePrint Archive, Report 2007/076 (2007)
Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 324–340. Springer, Heidelberg (2008)
Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and exposure-resilient cryptography. SIAM J. Comput. 36(5), 1231–1247 (2006)
Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on Programming Languages and Systems, 382–401 (July 1982)
Macwilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1983)
Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM, JACM 27(2) (April 1980)
Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in synchronous networks. Information and Computation 1(126), 53–61 (1996)
Shi, H., Jiang, S., Safavi-Naini, R., Tuhin, M.: Optimal secure message transmission by public discussion. In: IEEE Symposium on Information Theory (2009)
Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)
Srinathan, K., Prasad, N.R., Pandu Rangan, C.: On the optimal communication complexity of multiphase protocols for perfect communication. In: IEEE Symposium on Security and Privacy, pp. 311–320 (2007)
Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In: PODC, pp. 83–89 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Garay, J., Givens, C., Ostrovsky, R. (2011). Secure Message Transmission by Public Discussion: A Brief Survey. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-20901-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20900-0
Online ISBN: 978-3-642-20901-7
eBook Packages: Computer ScienceComputer Science (R0)