Abstract
Property testing is a kind of randomized approximation in which one takes a small, random sample of a structure and wishes to determine whether the structure satisfies some property or is far from satisfying the property. We focus on the testability of classes of first-order expressible properties, and in particular, on the classification of prefix-vocabulary classes for testability. The main result is the untestability of [ ∀ ∃ ∀ ,(0,1)]=. This is a well-known class and minimal for untestability. We discuss what is currently known about the classification for testability and briefly compare it to other classifications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Blais, E.: Testing Boolean function isomorphism. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 394–405. Springer, Heidelberg (2010)
Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. Combinatorica 20(4), 451–476 (2000)
Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. SIAM J. Comput. 30(6), 1842–1862 (2001)
Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. of Comput. Syst. Sci. 47(3), 549–595 (1993)
Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)
Büchi, J.R.: Weak second-order arithmetic and finite-automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)
Fischer, E.: The art of uninformed decisions. Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)
Fischer, E., Matsliah, A.: Testing graph isomorphism. SIAM J. Comput. 38(1), 207–225 (2008)
Flum, J., Grohe, M.: Parametrized Complexity Theory. Springer, Heidelberg (2006)
Goldreich, O.: Introduction to testing graph properties. Technical Report TR10-082, Electronic Colloquium on Computational Complexity (ECCC) (May 2010)
Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)
Jordan, C., Zeugmann, T.: Relational properties expressible with one universal quantifier are testable. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 141–155. Springer, Heidelberg (2009)
Jordan, C., Zeugmann, T.: A note on the testability of Ramsey’s class. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 296–307. Springer, Heidelberg (2010)
Jordan, C., Zeugmann, T.: Untestable properties expressible with four first-order quantifiers. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 333–343. Springer, Heidelberg (2010)
Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the ∀ ∃ ∀ case. Proc. Nat. Acad. Sci. U.S.A. 48, 365–377 (1962)
Kolaitis, P.G., Vardi, M.Y.: 0-1 laws for fragments of existential second-order logic: A survey. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 84–98. Springer, Heidelberg (2000)
McNaughton, R., Papert, S.: Counter-Free Automata. M.I.T. Press, Cambridge (1971)
Ron, D.: Property testing. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J. (eds.) Handbook of Randomized Computing, vol. II, pp. 597–649. Kluwer Academic Publishers, Dordrecht (2001)
Ron, D.: Property testing: A learning theory perspective. Found. Trends Mach. Learn. 1(3), 307–402 (2008)
Ron, D.: Algorithmic and analysis techniques in property testing. Found. Trends Theor. Comput. Sci. 5(2), 73–205 (2009)
Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)
Vedø, A.: Asymptotic probabilities for second-order existential Kahr-Moore-Wang sentences. J. Symbolic Logic 62(1), 304–319 (1997)
Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity. In: 18th Annual Symposium on Foundations of Computer Science, pp. 222–227. IEEE Computer Society, Los Alamitos (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jordan, C., Zeugmann, T. (2011). Untestable Properties in the Kahr-Moore-Wang Class. In: Beklemishev, L.D., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2011. Lecture Notes in Computer Science(), vol 6642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20920-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-20920-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20919-2
Online ISBN: 978-3-642-20920-8
eBook Packages: Computer ScienceComputer Science (R0)