Skip to main content

On Polymorphic Types of Untyped Terms

  • Conference paper
Logic, Language, Information and Computation (WoLLIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6642))

  • 554 Accesses

Abstract

Let $ be a finite set of beta normal closed terms and M and N a pair of beta normal, eta distinct, closed terms. Then there exist polymorphic types a,b such that every member of $ can be typed as a, and M and N have eta expansions which can be typed as b ; where, in the resulting typings, the members of $ can be simultaneously consistently identified, and the eta expansions of M and N are beta-eta inconsistent (no model with more than one element of any type). A similar result holds in the presence of surjective pairing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barendegt, H.P.: The Lambda Calculus. North-Holland, Amsterdam (1981)

    Google Scholar 

  2. Böhm, C.: Alcune proprieta delle forme beta-eta-normali nei lambda-K-calcolo. P.I.A.C. 696 (1968)

    Google Scholar 

  3. Church, A.: Calculi of Lambda Conversion. P.U.P (1941)

    Google Scholar 

  4. de Vrijer, R.: Extending the lambda calculus with surjective pairing is conservative. LICS 4, 204–215 (1989)

    MATH  Google Scholar 

  5. Girard, J.Y.: Interpretation fonctionelle et elimination des coupures dans l’arithmetique d’ordre supieure. U. Paris VII (1972)

    Google Scholar 

  6. Jacopini, G.: A condition for identifying two elements of whatever model of combinatory logic. L.N.C.S. 37 (1975)

    Google Scholar 

  7. Reynolds, J.: Personal communication (circa 1985)

    Google Scholar 

  8. Statman, R.: Surjective pairing revisited. In: van Oostrom, K., van Raamsdonk (eds.) Liber Amicorum for Roel de Vrijer, University of Amsterdam, Amsterdam (2009)

    Google Scholar 

  9. Stovering, K.: Extending the extensional lambda calculus with surjective pairing is conservative. LMCS 2, 1–14 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Mitchell, J.: Polymorphic type inference and containment. Information and Computation 76(2-3), 211–249 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Statman, R. (2011). On Polymorphic Types of Untyped Terms. In: Beklemishev, L.D., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2011. Lecture Notes in Computer Science(), vol 6642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20920-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20920-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20919-2

  • Online ISBN: 978-3-642-20920-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics