Abstract
Let $ be a finite set of beta normal closed terms and M and N a pair of beta normal, eta distinct, closed terms. Then there exist polymorphic types a,b such that every member of $ can be typed as a, and M and N have eta expansions which can be typed as b ; where, in the resulting typings, the members of $ can be simultaneously consistently identified, and the eta expansions of M and N are beta-eta inconsistent (no model with more than one element of any type). A similar result holds in the presence of surjective pairing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barendegt, H.P.: The Lambda Calculus. North-Holland, Amsterdam (1981)
Böhm, C.: Alcune proprieta delle forme beta-eta-normali nei lambda-K-calcolo. P.I.A.C. 696 (1968)
Church, A.: Calculi of Lambda Conversion. P.U.P (1941)
de Vrijer, R.: Extending the lambda calculus with surjective pairing is conservative. LICS 4, 204–215 (1989)
Girard, J.Y.: Interpretation fonctionelle et elimination des coupures dans l’arithmetique d’ordre supieure. U. Paris VII (1972)
Jacopini, G.: A condition for identifying two elements of whatever model of combinatory logic. L.N.C.S. 37 (1975)
Reynolds, J.: Personal communication (circa 1985)
Statman, R.: Surjective pairing revisited. In: van Oostrom, K., van Raamsdonk (eds.) Liber Amicorum for Roel de Vrijer, University of Amsterdam, Amsterdam (2009)
Stovering, K.: Extending the extensional lambda calculus with surjective pairing is conservative. LMCS 2, 1–14 (2006)
Mitchell, J.: Polymorphic type inference and containment. Information and Computation 76(2-3), 211–249 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Statman, R. (2011). On Polymorphic Types of Untyped Terms. In: Beklemishev, L.D., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2011. Lecture Notes in Computer Science(), vol 6642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20920-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-20920-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20919-2
Online ISBN: 978-3-642-20920-8
eBook Packages: Computer ScienceComputer Science (R0)