Skip to main content

Universal Meta-Learning Architecture and Algorithms

  • Chapter
Meta-Learning in Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 358))

Abstract

There are hundreds of algorithms within data mining. Some of them are used to transform data, some to build classifiers, others for prediction, etc. Nobody knows well all these algorithms and nobody can know all the arcana of their behavior in all possible applications. How to find the best combination of transformation and final machine which solves given problem?

The solution is to use configurable and efficient meta-learning to solve data mining problems. Below, a general and flexible meta-learning system is presented. It can be used to solve different problems with computational intelligence, basing on learning from data.

The main ideas of our meta-learning algorithms lie in complexity controlled loop, searching for most adequate models and in using special functional specification of search spaces (the meta-learning spaces) combined with flexible way of defining the goal of meta-searching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jankowski, N., Grąbczewski, K.: Learning machines. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature extraction, foundations and applications, pp. 29–64. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Guyon, I.: Nips 2003 workshop on feature extraction, http://www.clopinet.com/isabelle/Projects/NIPS2003 (2003)

  3. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature extraction, foundations and applications. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  4. Guyon, I.: Performance prediction challenge (2006), http://www.modelselect.inf.ethz.ch

  5. Chan, P., Stolfo, S.J.: On the accuracy of meta-learning for scalable data mining. Journal of Intelligent Information Systems 8, 5–28 (1996)

    Article  Google Scholar 

  6. Prodromidis, A., Chan, P.: Meta-learning in distributed data mining systems: Issues and approaches. In: Kargupta, H., Chan, P. (eds.) Book on Advances of Distributed Data Mining. AAAI Press, Menlo Park (2000)

    Google Scholar 

  7. Todorovski, L., Dzeroski, S.: Combining classifiers with meta decision trees. Machine Learning Journal 50, 223–249 (2003)

    Article  MATH  Google Scholar 

  8. Duch, W., Itert, L.: Committees of undemocratic competent models. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 33–36. Springer, Heidelberg (2003)

    Google Scholar 

  9. Jankowski, N., Grąbczewski, K.: Heterogenous committees with competence analysis. In: Nedjah, N., Mourelle, L., Vellasco, M., Abraham, A., Köppen, M. (eds.) Fifth International conference on Hybrid Intelligent Systems, Brasil, Rio de Janeiro, pp. 417–422. IEEE, Computer Society, Los Alamitos (2005)

    Google Scholar 

  10. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 743–750. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  11. Brazdil, P., Soares, C., da Costa, J.P.: Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning 50, 251–277 (2003)

    Article  MATH  Google Scholar 

  12. Bensusan, H., Giraud-Carrier, C., Kennedy, C.J.: A higher-order approach to meta-learning. In: Cussens, J., Frisch, A. (eds.) Proceedings of the Work-in-Progress Track at the 10th International Conference on Inductive Logic Programming, pp. 33–42 (2000)

    Google Scholar 

  13. Peng, Y., Falch, P., Soares, C., Brazdil, P.: Improved dataset characterisation for meta-learning. In: The 5th International Conference on Discovery Science, pp. 141–152. Springer, Luebeck (2002)

    Google Scholar 

  14. Kadlec, P., Gabrys, B.: Learnt topology gating artificial neural networks. In: IEEE World Congress on Computational Intelligence, pp. 2605–2612. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  15. Smith-Miles, K.A.: Towards insightful algorithm selection for optimization using meta-learning concepts. In: IEEE World Congress on Computational Intelligence, pp. 4117–4123. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  16. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Prob. Inf. Trans. 1, 1–7 (1965)

    Google Scholar 

  17. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. In: Text and Monographs in Computer Science. Springer, Heidelberg (1993)

    Google Scholar 

  18. Jankowski, N.: Applications of Levin’s universal optimal search algorithm. In: Kącki, E. (ed.) System Modeling Control 1995, vol. 3, pp. 34–40. Polish Society of Medical Informatics, Lódź (1995)

    Google Scholar 

  19. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  20. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  22. Rissanen, J.: Modeling by shortest data description. Automatica 14, 445–471 (1978)

    Article  Google Scholar 

  23. Mitchell, T.: Machine learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  24. Werbose, P.J.: Beyond regression: New tools for prediction and analysis in the bahavioral sciences. PhD thesis. Harvard Univeristy, Cambridge, MA (1974)

    Google Scholar 

  25. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. Institute of Electrical and Electronics Engineers Transactions on Information Theory 13, 21–27 (1967)

    MATH  Google Scholar 

  26. Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. ACM Press, Pittsburgh (1992)

    Google Scholar 

  27. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

  28. Grąbczewski, K., Duch, W.: The Separability of Split Value criterion. In: Proceedings of the 5th Conference on Neural Networks and Their Applications, Zakopane, Poland, pp. 201–208 (2000)

    Google Scholar 

  29. Grąbczewski, K., Jankowski, N.: Saving time and memory in computational intelligence system with machine unification and task spooling. Knowledge-Based Systems, 30 (2011) (in print)

    Google Scholar 

  30. Jankowski, N., Grąbczewski, K.: Increasing efficiency of data mining systems by machine unification and double machine cache. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6113, pp. 380–387. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Grąbczewski, K., Jankowski, N.: Task management in advanced computational intelligence system. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6113, pp. 331–338. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Jankowski, N., Grąbczewski, K.: Gained knowledge exchange and analysis for meta-learning. In: Proceedings of International Conference on Machine Learning and Cybernetics, Hong Kong, China, pp. 795–802. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  33. Grąbczewski, K., Jankowski, N.: Meta-learning architecture for knowledge representation and management in computational intelligence. International Journal of Information Technology and Intelligent Computing 2, 27 (2007)

    Google Scholar 

  34. Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~simmlearn/MLRepository.html

  35. Kohonen, T.: Learning vector quantization for pattern recognition. Technical Report TKK-F-A601, Helsinki University of Technology, Espoo, Finland (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jankowski, N., Grąbczewski, K. (2011). Universal Meta-Learning Architecture and Algorithms. In: Jankowski, N., Duch, W., Gra̧bczewski, K. (eds) Meta-Learning in Computational Intelligence. Studies in Computational Intelligence, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20980-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20980-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20979-6

  • Online ISBN: 978-3-642-20980-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics