Skip to main content

Meta-Learning Architectures: Collecting, Organizing and Exploiting Meta-Knowledge

  • Chapter
Meta-Learning in Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 358))

Abstract

While a valid intellectual challenge in its own right, meta-learning finds its real raison d’être in the practical support it offers Data Mining practitioners [20]. Indeed, the whole point of understanding how to learn in any given situation is to go out in the real world and learn as much as possible, from any source of data we encounter! However, almost any type of raw data will initially be very hard to learn from, and about 80% of the effort in discovering useful patterns lies in the clever preprocessing of data [47]. Thus, for machine learning to become a tool we can instantly apply in any given situation, or at least to get proper guidance when applying it, we need to build extended meta-learning systems that encompass the entire knowledge discovery process, from raw data to finished models, and that keep learning, keep accumulating meta-knowledge, every time they are presented with new problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D.: Generalizing from case studies: A case study. In: Proceedings of the Ninth International Conference on Machine Learning, pp. 1–10 (1992)

    Google Scholar 

  2. Asuncion, A., Newman, D.: Uci machine learning repository. University of California, School of Information and Computer Science (2007)

    Google Scholar 

  3. Bensusan, H., Giraud-Carrier, C.: Discovering task neighbourhoods through landmark learning performances. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 325–330. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bernstein, A., Dänzer, M.: The nExT system: Towards true dynamic adaptations of semantic web service compositions. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 739–748. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Bernstein, A., Provost, F., Hill, S.: Toward intelligent assistance for a data mining process: an ontology-based approach for cost-sensitive classification. IEEE Transactions on Knowledge and Data Engineering 17(4), 503–518 (2005)

    Article  Google Scholar 

  6. Blockeel, H., Vanschoren, J.: Experiment databases: Towards an improved experimental methodology in machine learning. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 6–17. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to data mining. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  8. Brazdil, P., Soares, C., Costa, J.P.D.: Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results. Machine Learning 50, 251–277 (2003)

    Article  MATH  Google Scholar 

  9. Chandrasekaran, B., Josephson, J.: What are ontologies, and why do we need them? IEEE Intelligent systems 14(1), 20–26 (1999)

    Article  Google Scholar 

  10. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: Crisp-dm 1.0. a step-by-step data mining guide (1999), http://www.crisp-dm.org

  11. Charest, M., Delisle, S.: Ontology-guided intelligent data mining assistance: Combining declarative and …. In: Proceedings of the 10th IASTED International Conference on Artificial Intelligence and Soft Computing, pp. 9–14 (2006)

    Google Scholar 

  12. Charest, M., Delisle, S., Cervantes, O., Shen, Y.: Intelligent data mining assistance via cbr and ontologies. In: Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA 2006) (2006)

    Google Scholar 

  13. Charest, M., Delisle, S., Cervantes, O., Shen, Y.: Bridging the gap between data mining and decision support: A case-based reasoning and …. Intelligent Data Analysis 12, 1–26 (2008)

    Google Scholar 

  14. Craw, S., Sleeman, D., Graner, N., Rissakis, M.: Consultant: Providing advice for the machine learning toolbox. In: Research and Development in Expert Systems IX: Proceedings of Expert Systems 1992, pp. 5–23 (1992)

    Google Scholar 

  15. Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Horrocks, I., Orah, L., McGuinness, D., Patel-Schneider, P.F., Stein, L.A.: Web ontology language (owl) reference version 1.0. W3C Working Draft (2003), http://www.w3.org/TR/2003/WD-owl-ref-20030331

  16. Engels, R.: Planning tasks for knowledge discovery in databases; performing task-oriented user-guidance. In: Proceedings of the 2nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 170–175 (1996)

    Google Scholar 

  17. Fikes, R., Nilsson, N.: Strips: A new approach to the application of theorem proving to problem solving. Artificial intelligence 2, 189–208 (1971)

    Article  MATH  Google Scholar 

  18. Foster, I.: Service-oriented science. science 308(5723), 814 (2005)

    Article  Google Scholar 

  19. Giraud-Carrier, C.: The data mining advisor: meta-learning at the service of practitioners. In: Proceedings of the 4th International Conference on Machine Learning and Applications, pp. 113–119 (2005)

    Google Scholar 

  20. Giraud-Carrier, C.: Metalearning-a tutorial. Tutorial at the 2008 International Conference on Machine Learning and Applications, ICMLA 2008 (2008)

    Google Scholar 

  21. Grabczewski, K., Jankowski, N.: Versatile and efficient meta-learning architecture: Knowledge representation and …. In: IEEE Symposium on Computational Intelligence and Data Mining, pp. 51–58 (2007)

    Google Scholar 

  22. Grąbczewski, K., Jankowski, N.: Meta-learning with machine generators and complexity controlled exploration. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 545–555. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The weka data mining software: An update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  24. Hidalgo, M., Menasalvas, E., Eibe, S.: Definition of a metadata schema for describing data preparation tasks. In: Proceedings of the ECML/PKDD 2009 Workshop on 3rd generation Data Mining (SoKD 2009), pp. 64–75 (2009)

    Google Scholar 

  25. Hilario, M., Kalousis, A.: Building algorithm profiles for prior model selection in knowledge discovery systems. Engineering Intelligent Systems 8(2) (2000)

    Google Scholar 

  26. Hilario, M., Kalousis, A., Nguyen, P., Woznica, A.: A data mining ontology for algorithm selection and meta-mining. In: Proceedings of the ECML/PKDD 2009 Workshop on 3rd generation Data Mining (SoKD 2009), pp. 76–87 (2009)

    Google Scholar 

  27. Homann, J., Nebel, B.: The ff planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

    Google Scholar 

  28. Horrocks, I., Patel-Schneider, P., Boley, H.: Swrl: A semantic web rule language combining owl and ruleml. W3C Member submission (2004), http://www.w3.org/Submissions/SWRL/

  29. Kalousis, A.: Algorithm selection via meta-learning. PhD Thesis. University of Geneve (2002)

    Google Scholar 

  30. Kalousis, A., Bernstein, A., Hilario, M.: Meta-learning with kernels and similarity functions for planning of data mining workflows. In: ICML/COLT/UAI 2008 Planning to Learn Workshop (PlanLearn), pp. 23–28 (2008)

    Google Scholar 

  31. Kalousis, A., Hilario, M.: Model selection via meta-learning: a comparative study. International Journal on Artificial Intelligence Tools 10(4), 525–554 (2001)

    Article  Google Scholar 

  32. Kalousis, A., Theoharis, T.: Noemon: Design, implementation and performance results of an intelligent assistant for classifier selection. Intelligent Data Analysis 3(4), 319–337 (1999)

    Article  MATH  Google Scholar 

  33. Kaufman, K.: Inlen: a methodology and integrated system for knowledge discovery in databases. PhD Thesis, School of Information Technology and Engineering, George Mason University (1997)

    Google Scholar 

  34. Kaufman, K., Michalski, R.: Discovery planning: Multistrategy learning in data mining. In: Proceedings of the Fourth International Workshop on Multistrategy Learning, pp. 14–20 (1998)

    Google Scholar 

  35. Kietz, J., Serban, F., Bernstein, A., Fischer, S.: Towards cooperative planning of data mining workflows. In: Proceedings of the Third Generation Data Mining Workshop at the 2009 European Conference on Machine Learning (ECML 2009), pp. 1–12 (2009)

    Google Scholar 

  36. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning with owls-xplan. In: Proceedings of the First International AAAI Fall Symposium on Agents and the Semantic Web (2005)

    Google Scholar 

  37. Kodratoff, Y., Sleeman, D., Uszynski, M., Causse, K., Craw, S.: Building a machine learning toolbox. In: Enhancing the Knowledge Engineering Process: Contributions from ESPRIT, pp. 81–108 (1992)

    Google Scholar 

  38. Le-Khac, N., Kechadi, M., Carthy, J.: Admire framework: Distributed data mining on data grid platforms. In: Proceedings of the 1st International Conference on Software and Data Technologies, vol. 2, pp. 67–72 (2006)

    Google Scholar 

  39. Levin, L.: Universal sequential search problems. Problemy Peredachi Informatsii 9(3), 115–116 (1973)

    MATH  MathSciNet  Google Scholar 

  40. Li, M., Vitányi, P.: An introduction to kolmogorov complexity and its applications. In: Text and Monographs in Computer Science. Springer, Heidelberg (1993)

    Google Scholar 

  41. Lindner, G., Studer, R.: Ast: Support for algorithm selection with a cbr approach. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 418–423. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  42. Liu, Z., Ranganathan, A., Riabov, A.: A planning approach for message-oriented semantic web service composition. In: Proceedings of the National Conference on AI, vol. 5(2), pp. 1389–1394 (2007)

    Google Scholar 

  43. METAL. Metal: A meta-learning assistant for providing user support in machine learning and data mining. ESPRIT Framework IV LRT Reactive Project Nr. 26.357 (2001)

    Google Scholar 

  44. Michalski, R., Kerschberg, L., Kaufman, K.: Mining for knowledge in databases: The inlen architecture, initial implementation and first results. Journal of Intelligent Information Systems 1(1), 85–113 (1992)

    Article  Google Scholar 

  45. Michie, D., Spiegelhalter, D., Taylor, C.: Machine learning. In: Neural and Statistical Classification. Ellis Horwood (1994)

    Google Scholar 

  46. MLT. Machine learning toolbox. Esprit Framework II Research Project Nr. 2154 (1993)

    Google Scholar 

  47. Morik, K., Scholz, M.: The miningmart approach to knowledge discovery in databases. Intelligent Technologies for Information Analysis, pp. 47–65 (2004)

    Google Scholar 

  48. Panov, P., Dzeroski, S., Soldatova, L.: Ontodm: An ontology of data mining. In: Proceedings of the 2008 IEEE International Conference on Data MIning Workshops, pp. 752–760 (2008)

    Google Scholar 

  49. Panov, P., Soldatova, L.N., Džeroski, S.: Towards an ontology of data mining investigations. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 257–271. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  50. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 743–750 (2000)

    Google Scholar 

  51. Podpecan, V., Jursic, M., Zakova, M., Lavrac, N.: Towards a service-oriented knowledge discovery platform. In: Proceedings of the SoKD 2009 International Workshop on Third Generation Data Mining at ECML PKDD 2009, pp. 25–38 (2009)

    Google Scholar 

  52. Rendell, L., Seshu, R., Tcheng, D.: Layered concept learning and dynamically-variable bias management. In: Proceedings of the 10th International Joint Conference on Artificial Intelligence, pp. 308–314 (1987)

    Google Scholar 

  53. De Roure, D., Goble, C., Stevens, R.: The design and realisation of the myexperiment virtual research environment for social sharing of workflows. Future Generation Computer Systems 25, 561–567 (2009)

    Article  Google Scholar 

  54. Rowe, A., Kalaitzopoulos, D., Osmond, M.: The discovery net system for high throughput bioinformatics. Bioinformatics 19, 225–231 (2003)

    Article  Google Scholar 

  55. Sacerdoti, E.: Planning in a hierarchy of abstraction spaces. Artificial intelligence 5(2), 115–135 (1974)

    Article  MATH  Google Scholar 

  56. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: Htn planning for web service composition using shop2. Journal of Web Semantics 1(4), 377–396 (2004)

    Article  Google Scholar 

  57. Sleeman, D., Rissakis, M., Craw, S., Graner, N., Sharma, S.: Consultant-2: Pre-and post-processing of machine learning applications. International Journal of Human-Computer Studies 43(1), 43–63 (1995)

    Article  Google Scholar 

  58. Soldatova, L., King, R.: An ontology of scientific experiments. Journal of the Royal Society Interface 3(11), 795–803 (2006)

    Article  Google Scholar 

  59. Talia, D., Trunfio, P., Verta, O.: Weka4ws: a wsrf-enabled weka toolkit for distributed data mining on grids. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 309–320. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  60. Taylor, I., Shields, M., Wang, I., Harrison, A.: The triana workflow environment: Architecture and applications. In: Workflows for e-Science, pp. 320–339. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  61. Utgoff, P.: Shift of bias for inductive concept learning. In: Machine learning: An artificial intelligence approach, vol. II. Morgan Kaufmann, San Francisco (1986)

    Google Scholar 

  62. Van Someren, M.: Towards automating goal-driven learning. In: Proceedings of the Planning to Learn Workshop at the 18th European Conference of Machine Learning (ECML 2007), pp. 42–52 (2007)

    Google Scholar 

  63. Vanschoren, J., Assche, A.V., Vens, C., Blockeel, H.: Meta-learning from experiment databases: An illustration. In: Proceedings of the 16th Annual Machine Learning Conference of Belgium and The Netherlands (Benelearn 2007), pp. 120–127 (2007)

    Google Scholar 

  64. Vanschoren, J., Blockeel, H.: A community-based platform for machine learning experimentation. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. Lecture Notes in Computer Science (LNAI), vol. 5782, pp. 750–754. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  65. Vanschoren, J., Blockeel, H., Pfahringer, B.: Experiment databases: Creating a new platform for meta-learning research. In: Proceedings of the ICML/UAI/COLT Joint Planning to Learn Workshop (PlanLearn 2008), pp. 10–15 (2008)

    Google Scholar 

  66. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Organizing the world’s machine learning information. Communications in Computer and Information Science 17, 693–708 (2008)

    Article  Google Scholar 

  67. Vanschoren, J., Pfahringer, B., Holmes, G.: Learning from the past with experiment databases. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351, pp. 485–496. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  68. Wirth, R., Shearer, C., Grimmer, U., Reinartz, T., Schlosser, J., Breitner, C., Engels, R., Lindner, G.: Towards process-oriented tool support for knowledge discovery in databases. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 243–253. Springer, Heidelberg (1997)

    Google Scholar 

  69. Zakova, M., Kremen, P., Zelezny, F., Lavrac, N.: Planning to learn with a knowledge discovery ontology. In: Second Planning to Learn Workshop at the Joint ICML/COLT/UAI Conference, pp. 29–34 (2008)

    Google Scholar 

  70. Záková, M., Podpecan, V., Zelezný, F., Lavrac, N.: Advancing data mining workflow construction: A framework and cases using the orange toolkit. In: Proceedings of the SoKD-2009 International Workshop on Third Generation Data Mining at ECML PKDD 2009, pp. 39–51 (2009)

    Google Scholar 

  71. Zhong, N., Liu, C., Ohsuga, S.: Dynamically organizing kdd processes. International Journal of Pattern Recognition and Artificial Intelligence 15(3), 451–473 (2001)

    Article  Google Scholar 

  72. Zhong, N., Matsui, Y., Okuno, T., Liu, C.: Framework of a multi-agent kdd system. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 337–346. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  73. Zhong, N., Ohsuga, S.: The gls discovery system: its goal, architecture and current results. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 233–244. Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vanschoren, J. (2011). Meta-Learning Architectures: Collecting, Organizing and Exploiting Meta-Knowledge. In: Jankowski, N., Duch, W., Gra̧bczewski, K. (eds) Meta-Learning in Computational Intelligence. Studies in Computational Intelligence, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20980-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20980-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20979-6

  • Online ISBN: 978-3-642-20980-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics