Skip to main content

Computational Intelligence for Meta-Learning: A Promising Avenue of Research

  • Chapter
Meta-Learning in Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 358))

Abstract

The common practices of machine learning appear to be frustrated by a number of theoretical results denying the possibility of any meaningful implementation of a “superior” learning algorithm. However, there exist some general assumptions that, even when overlooked, preside the activity of researchers and practitioners. A thorough reflection over such essential premises brings forward the meta-learning approach as the most suitable for escaping the long-dated riddle of induction claiming also an epistemologic soundness. Several examples of meta-learning models can be found in literature, yet the combination of computational intelligence techniques with meta-learning models still remains scarcely explored. Our contribution to this particular research line consists in the realisation of Mindful, a meta-learning system based on the neuro-fuzzy hybridisation. We present the Mindful system firstly situating it inside the general context of the meta-learning frameworks proposed in literature. Finally, a complete session of experiments is illustrated, comprising both base-level and meta-level learning activity. The appreciable experimental results underline the suitability of the Mindful system for managing past accumulated learning experience while facing novel tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D.W.: Generalizing from case studies: a case study. In: Proceedings of the Ninth International Conference on Machine Learning, MLC 1992 (1992)

    Google Scholar 

  2. Brodley, C.: Addressing the selective superiority problem: automatic algorithm/model class selection. In: Proceedings of the Tenth International Conference on Machine Learning (MLC 1993), pp. 17–24 (1993)

    Google Scholar 

  3. Desjardins, M., Gordon, D.: Evaluation and selection of bias in machine learning. Machine Learning 20, 5–22 (1995)

    Google Scholar 

  4. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-learning. Machine Learning 54, 187–193 (2004)

    Article  Google Scholar 

  5. Vilalta, R., Drissi, Y.: A perspective view and survey of Meta-Learning. Artificial Intelligence Review 18, 77–95 (2002)

    Article  Google Scholar 

  6. Vilalta, R., Giraud-Carrier, C., Brazdil, P.: Meta-Learning: Concepts and Techniques. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, Springer, Heidelberg (2005)

    Google Scholar 

  7. Hume, D.: A Treatise of Human Nature (1740)

    Google Scholar 

  8. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  9. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Search. Technical Report, Santa Fe Institute (1995)

    Google Scholar 

  10. Schaffer, C.: A conservation law for generalization performance. In: Proceedings of the Eleventh International Conference on Machine Learning (ICML 1994), pp. 259–265 (1994)

    Google Scholar 

  11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  12. Giraud-Carrier, C., Provost, F.: Toward a Justification of Meta-learning: Is the No Free Lunch Theorem a Show-stopper? In: Proceedings of the ICML Workshop on Meta-Learning, pp. 9–16 (2005)

    Google Scholar 

  13. Bensusan, H., Giraud-Carrier, C.: Discovering Task Neighbourhoods through Landmark Learning Performances. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 325–330. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Chan, P.K., Stolfo, S.J.: Experiments on multistrategy learning by meta-learning. In: Proc. Second International Conference Information and Knowledge Management, pp. 314–323 (1993)

    Google Scholar 

  15. Domingos, P.: Knowledge Discovery Via Multiple Models. Intelligent Data Analysis 2, 187–202 (1998)

    Article  Google Scholar 

  16. Kalousis, A., Hilario, M.: Model Selection Via Meta-Learning: a Comparative Study. In: Proceedings of the 12th International IEEE Conference on Tools with AI. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  17. Schweighhofer, N., Doya, K.: Meta-Learning in Reinforcement Learning. Neural Networks 16, 5–9 (2003)

    Article  Google Scholar 

  18. van Someren, M.: Model class selection and construction: Beyond the procrustean approach to machine learning applications. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, pp. 196–217. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Vilalta, R., Giraud-Carrier CBrazdil, P., Soares, C.: Using Meta-Learning to Support Data Mining. International Journal of Computer Science and Applications 1, 31–45 (2004)

    Google Scholar 

  20. Bensusan, H.N.: Automatic Bias Learning: an inquiry into the inductive basis of induction. Ph.D. thesis,school University of Sussex (1999)

    Google Scholar 

  21. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)

    Article  Google Scholar 

  22. Smith-Miles, K.A.: Cross-disciplinary Perspectives on Meta-learning for Algorithm Selection. ACM Computing Surveys (2009)

    Google Scholar 

  23. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  24. Silver, D.L.: Selective Transfer of Neural Network task knowledge, Ph.D. thesis,School University of Western Ontarioaddress London, Ontario (2000)

    Google Scholar 

  25. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Touretzky, D., Mozer, M., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, pp. 640–646. MIT Press, Cambridge (1996)

    Google Scholar 

  26. Thrun, S.: Lifelong learning algorithms. In: Thrun, S., Pratt, L. (eds.) Learning to learn, pp. 181–209. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  27. Castiello, C.: Meta-learning: a concern for epistemology and computational intelligence, Ph.D. thesis, school University of Bari, Bari, Italy (2005)

    Google Scholar 

  28. Soares, C., Brazdil, P., Kuba, P.: A Meta-Learning Method to Select the Kernel Width in Support Vector Regression. Machine Learning 54, 195–209 (2004)

    Article  MATH  Google Scholar 

  29. Michie, D., Spiegelhalter, D., Taylor, C.: Machine learning, neural and statistical classification. Ellis Horwood Series in Artificial Intelligence (1994)

    Google Scholar 

  30. Gama, J., Brazdil, P.: Characterization of classification algorithms. In: Pinto-Ferreira, C., Mamede, N.J. (eds.) EPIA 1995. LNCS, vol. 990, pp. 83–102. Springer, Heidelberg (1995)

    Google Scholar 

  31. Linder, C., Studer, R.: AST: Support for Algorithm Selection with a CBR Approach. In: Recent Advances in Meta-Learning and Future Work, pp. 418–423 (1999)

    Google Scholar 

  32. Sohn, S.Y.: Meta analysis of classification algorithms for pattern recognition. JournalIEEE Transactions on Pattern Analysis and Machine Intelligence 21, 1137–1144 (1999)

    Article  Google Scholar 

  33. Castiello, C., Castellano, G., Fanelli, A.M.: Meta-data: Characterization of input features for meta-learning. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 457–468. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Bensusan, H.: Odd Bites into Bananas Don’t Make You Blind: Learning about Simplicity and Attribute Addition. In: Proceedings of the ECML Workshop on Upgrading Learning to the Meta-level: Model Selection and Data Transformation, pp. 30–42 (1998)

    Google Scholar 

  35. Bensusan, H., Giraud-Carrier, C., Kennedy, C.: A Higher order Approach to Meta-learning. In: Proceedings of the ECML Workshop on Meta-learning: Building Automatic Advice Strategies for Model Selection and Method Combination, pp. 109–118 (2000)

    Google Scholar 

  36. Peng, Y., Flach, P., Brazdil, P., Soares, C.: Improved Data Set Characterisation for Meta-learning. In: Proceedings of the Fifth International Conference on Discovery Science, pp. 141–152 (2002)

    Google Scholar 

  37. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Tell me who can learn and I can tell who you are: landmarking various learning algorithms. In: Langley, P. (ed.) Proceeding of the 17th International Conference on Machine Learning (ICML2000), pp. 743–750. Morgan Kaufman, San Francisco (2000)

    Google Scholar 

  38. Brodley, C.: Recursive automatic bias selection for classifier construction. Machine Learning 20, 63–94 (1995)

    Google Scholar 

  39. Berrer, H., Paterson, I., Keller, J.: Evaluation of Machine learning Algorithm Ranking Advisors. In: Proceedings of the PKDD Workshop on Data-Mining, Decision Support, Meta-Learning and ILP: Forum for Practical Problem Presentation and Prospective Solutions, pp. 1–13 (2000)

    Google Scholar 

  40. Soares, C., Brazdil, P.B.: Zoomed ranking: Selection of classification algorithms based on relevant performance information. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 126–135. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  41. Brazdil, P., Soares, C., Pinto, J.: Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Machine Learning 50, 251–277 (2003)

    Article  MATH  Google Scholar 

  42. Giraud-Carrier, C.: Beyond Predictive Accuracy: What? In: Proceedings of the EMCL 1998 Workshop on Upgrading Learning to Meta-Learning: Model Selection and Data Transformation, pp. 78–85 (1998)

    Google Scholar 

  43. Abraham, A.: Meta-learning evolutionary artificial neural networks. Neurocomputing Journal 56, 1–38 (2004)

    Article  Google Scholar 

  44. Castiello, C., Fanelli, A.M.: Hybrid strategies and meta-learning: an inquiry into the epistemology of artificial learning. Research on Computing Science 16, 153–162 (2005)

    Google Scholar 

  45. Castiello, C.: Meta-Learning and Neurocomputing A New Perspective for Computational Intelligence. In: Hassanien, A.E., Abraham, A., Vasilakos, A., Pedrycz, W. (eds.) Foundations of Computational Intelligence, vol. 1, Springer, Heidelberg (2009)

    Google Scholar 

  46. Zadeh, L.A.: Fuzzy Sets. Infom. and Contr. 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zadeh, L.A., Kacprzyk, J.: Computing with Words in Information. Physica-Verlag, Heidelberg (1999)

    Google Scholar 

  48. Jang, J.S.R., Sun, C.T.: Neuro-Fuzzy Modeling and Control. Proceedings of the IEEE 83, 378–406 (1995)

    Article  Google Scholar 

  49. Kosko, B.: Neural Networks and Fuzzy Systems: a Dynamical Systems Approach. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  50. Lin, C.T., Lee, C.S.G.: Neural Fuzzy System: a Neural-Fuzzy Synergism to Intelligent Systems. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  51. Jang, J.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. System, Man and Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

  52. Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets and Systems 28, 15–33 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  53. Castellano, G., Castiello, C., Fanelli, A.M., Mencar, C.: Knowledge Discovery by a Neuro-Fuzzy Modeling Framework. Fuzzy Sets and Systems 149, 187–207 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  54. Castiello, C., Castellano, G., Fanelli, A.M.: MINDFUL: a framework for Meta-INDuctive neuro-FUzzy Learning. Information Sciences 178, 3253–3274 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castiello, C., Fanelli, A.M. (2011). Computational Intelligence for Meta-Learning: A Promising Avenue of Research. In: Jankowski, N., Duch, W., Gra̧bczewski, K. (eds) Meta-Learning in Computational Intelligence. Studies in Computational Intelligence, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20980-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20980-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20979-6

  • Online ISBN: 978-3-642-20980-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics