Skip to main content

Constitutive Parameter Estimation Methodology Using Tagged-MRI Data

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

Abstract

We propose a methodology for performing the estimation of a key constitutive parameter in a biomechanical heart model – namely, the tissue contractility – using tagged-MRI data. We adopt a sequential data assimilation strategy, and the image data is assumed to be processed in the form of deforming tag planes, which we employ to obtain a discrepancy between the model and the data by computing distances to these surfaces. We assess our procedure using synthetic measurements produced with a model representing an infarcted heart as observed in an animal experiment, and the estimation results are found to be of superior accuracy compared to assimilation based on segmented endo- and epicardium surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augenstein, K.F., Cowan, B.R., LeGrice, I.J., Nielsen, P.M.F., Young, A.A.: Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. J. Biomech. Eng. 127(1), 148–157 (2005)

    Article  Google Scholar 

  2. Billet, F., Sermesant, M., Delingette Delingette, H., Ayache, N.: Cardiac motion recovery by coupling an electromechanical model and cine-MRI data: First steps. In: Proc. of Computational Biomechanics for Medicine III. MICCAI Workshop (2008)

    Google Scholar 

  3. Blum, J., Le Dimet, F.X., Navon, I.M.: Data assimilation for geophysical fluids. In: Temam, R., Tribbia, J. (eds.) Handbook of Numerical Analysis: Computational Methods for the Atmosphere and the Oceans. Elsevier, Amsterdam (2008)

    Google Scholar 

  4. Chabiniok, R., Chapelle, D., Lesault, P.-F., Rahmouni, A., Deux, J.-F.: Validation of a biomechanical heart model using animal data with acute myocardial infarction. In: Proc. of CI2BM 2009 - MICCAI Workshop (2009)

    Google Scholar 

  5. Chabiniok, R., Moireau, P., Lesault, P.-F., Rahmouni, A., Deux, J.-F., Chapelle, D.: Trials on tissue contractility estimation from cardiac Cine MRI using a biomechanical heart model. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 304–312. Springer, Heidelberg (2011)

    Google Scholar 

  6. Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Analysis of 3D myocardial motion in tagged MR images using non-rigid image registration. IEEE Trans. Med. Imaging 23(10), 1245–1250 (2004)

    Article  Google Scholar 

  7. Chen, T., Wang, X., Chung, S., Metaxas, D.N., Axel, L.: Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models. IEEE Trans. Med. Imaging 29(1), 1–11 (2010)

    Article  Google Scholar 

  8. Clarysse, P., Basset, C., Khouas, L., Croisille, P., Friboulet, D., Odet, C., Magnin, I.E.: Two-dimensional spatial and temporal displacement and deformation field fitting from cardiac magnetic resonance tagging. Med. Image Anal. 4(3), 253–268 (2000)

    Article  Google Scholar 

  9. Declerck, J., Denney, T.S., Oztürk, C., O’Dell, W., McVeigh, E.R.: Left ventricular motion reconstruction from planar tagged MR images: a comparison. Phys. Med. Biol. 45(6), 1611–1632 (2000)

    Article  Google Scholar 

  10. Liu, H., Shi, P.: Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart. IEEE Trans. Biomed. Eng. 56(2), 378–389 (2009)

    Article  Google Scholar 

  11. Moireau, P., Chapelle, D.: Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. Cont. Optim. and Calc. Variat. (2010)

    Google Scholar 

  12. Moireau, P., Chapelle, D., Le Tallec, P.: Filtering for distributed mechanical systems using position measurements: Perspectives in medical imaging. Inverse Prob. 25(3), 35010 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moireau, P., Xiao, N., Astorino, M., Figueroa, C.A., Chapelle, D., Taylor, C.A., Gerbeau, J.-F.: External tissue support and fluid-structure simulation in blood flows. Biomech. Model. Mechanobiol. (2011)(in press)

    Google Scholar 

  14. Oubel, E., De Craene, M., Gazzola, M., Hero, A.O., Frangi, A.F.: Multiview registration of cardiac tagging MRI images. In: Proc. of ISBI 2007 (2007)

    Google Scholar 

  15. Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84, 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

  16. Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L., Chapelle, D., Razavi, R.: Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med. Image Anal. 10(4), 642–656 (2006)

    Article  MATH  Google Scholar 

  17. Young, A.A.: Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images. Med. Image Anal. 3(4), 361–372 (1999)

    Article  MathSciNet  Google Scholar 

  18. Young, A.A., Kraitchman, D.L., Dougherty, L., Axel, L.: Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Trans. Med. Imaging 14(3), 413–421 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Imperiale, A., Chabiniok, R., Moireau, P., Chapelle, D. (2011). Constitutive Parameter Estimation Methodology Using Tagged-MRI Data. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics