Skip to main content

Comparing Image-Based Respiratory Motion Correction Methods for Anatomical Roadmap Guided Cardiac Electrophysiology Procedures

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2011)

Abstract

X-ray fluoroscopically guided cardiac electrophysiological procedures are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of static 3D roadmaps derived from pre-procedural volumetric data can be used to add anatomical information. However, the registration between the 3D roadmap and the 2D X-ray data can be compromised by patient respiratory motion. Three methods were evaluated to correct for respiratory motion using features in the X-ray image data. The first method is based on tracking either the diaphragm or the heart border using the image intensity in a region of interest. The second method detects the tracheal bifurcation using the generalized Hough transform and a 3D model derived from pre-operative image data. The third method is based on tracking the coronary sinus (CS) catheter. All three methods were applied to X-ray images from 18 patients undergoing radiofrequency ablation for the treatment of atrial fibrillation. The 2D target registration errors (TRE) at the pulmonary veins were calculated to validate the methods. A TRE of 1.6 mm ± 0.8 mm was achieved for the diaphragm tracking; 1.7 mm ± 0.9 mm for heart border tracking; 1.9 mm ± 1.0 mm for trachea tracking and 1.8 mm ± 0.9 mm for CS catheter tracking. We also present a comparison between our techniques with other published image-based motion correction strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rhode, K.S., Hill, D.L.G., Edwards, P.J., Hipwell, J., Rueckert, D., Sanchez-Ortiz, G., Hegde, S., Rahunathan, V., Razavi, R.: Registration and Tracking to Integrate X-ray and MR Images in an XMR facility. IEEE Transactions on Medical Imaging 24(11), 810–815 (2003)

    Google Scholar 

  2. King, A.P., Boubertakh, R., Rhode, K.S., Ma, Y.L., Chinchapatnam, P., Gao, G., Tangcharoen, T., Ginks, M., Cooklin, M., Gill, J.S., Hawkes, D.J., Razavi, R.S., Schaeffter, T.: A Subject-specific Technique For Respiratory Motion Correction in Image-guided Cardiac Catheterisation Procedures. Med. Image. Anal. 13(3), 419–431 (2009)

    Article  Google Scholar 

  3. Timinger, H., Krueger, S., Dietmayer, K., Borgert, J.: Motion Compensated Coronary Interventional Navigation by Means of Diaphram Tracking and Elastic Motion Models. Phys. Med. Biol. 50(3), 491–503 (2005)

    Article  Google Scholar 

  4. Shechter, G., Shechter, B., Resar, J.R., Beyar, R.: Prospective Motion Correction of X-ray Images for Coronary Interventions. IEEE Transactions on Medical Imaging 24(4), 441–450 (2005)

    Article  Google Scholar 

  5. Brost, A., Liao, R., Hornegger, J., Strobel, N.: 3-D Respiratory Motion Compensation during EP Procedures by Image-based 3-D Lasso Catheter Model Generation and Tracking. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 394–401. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Wang, Y., Riederer, S.J., Ehman, R.L.: Respiratory Motion of the Heart: Kinematics and the Implications for the Spatial Resolution in Coronary Imaging. Magnetic Resonance in Medicine 33(5), 713–719 (1995)

    Article  Google Scholar 

  7. Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)

    Article  Google Scholar 

  8. Ma, Y., King, A.P., Gogin, N., Rinaldi, C.A., Gill, J., Razavi, R., Rhode, K.S.: Real-Time Respiratory Motion Correction for Cardiac Electrophysiology Procedures Using Image-Based Coronary Sinus Catheter Tracking. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 391–399. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, Y. et al. (2011). Comparing Image-Based Respiratory Motion Correction Methods for Anatomical Roadmap Guided Cardiac Electrophysiology Procedures. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics