
Traitor Tracing against Public Collaboration?

Xingwen Zhao, Fangguo Zhang

School of Information Science and Technology, Sun Yat-sen University
Guangzhou 510275, P.R.China

Guangdong Key Laboratory of Information Security Technology
Guangzhou 510275, P.R.China

sevenzhao@hotmail.com, isszhfg@mail.sysu.edu.cn

Abstract. Broadcast encryption provides a convenient method to dis-
tribute digital content to subscribers over an insecure broadcast channel.
Traitor tracing is needed because some users may give out their decryp-
tion keys to construct pirate decoders. There are many traitor tracing
schemes based on collusion secure codes and identifiable parent prop-
erty codes. However, these schemes are subject to public collaboration
of traitors, which is presented by Billet and Phan in EUROCRYPT 2009
as an attack against code-based traitor tracing schemes. In this paper,
we describe a generic collusion secure codes based scheme secure against
such collaboration. Our scheme is motivated by the idea of identity-based
encryption with wildcards (WIBE). We regard the collusion secure code-
word for each user as his/her identity, and issue private key accordingly.
When in broadcasting, we use a special pattern of WIBE, namely all
bit positions in the codewords of intended receivers are set as wildcards.
When in tracing, we use another special pattern of WIBE, namely all po-
sitions are set as wildcards except the tracing position. By using WIBE,
each user is issued one decryption key which should be used as a whole
and any incomplete part of the key is useless, while in previous codes
based schemes each user holds a number of keys that can be used sep-
arately for different bit positions in the codeword. Thus our scheme is
resistant to public collaboration, since if the decryption key is disclosed
as a whole, it will immediately lead to the accusation of the very traitor.
Our idea fits well for code based traitor tracing schemes, no matter col-
lusion secure codes or identifiable parent property codes. We provide an
instance based on Boneh-Boyen-Goh WIBE scheme, achieving constant
private key storage cost for each user. We also present another instance
achieving shorter ciphertexts, on the expense of increasing public keys
and private keys. Our scheme presents an answer to the problem left
open by Billet and Phan.

Key words: Broadcast encryption, traitor tracing, public collaboration.

? This work is supported by the National Natural Science Foundation of China (No.
60773202, 61070168).

2 Xingwen Zhao, Fangguo Zhang

1 Introduction

Broadcast encryption provides a convenient method to distribute digital content
to subscribers over an insecure broadcast channel so that only the qualified users
can recover the data. Broadcast encryption is quite useful and enjoys many
applications including pay-TV systems, distribution of copyrighted materials
such as DVD.

Because some users (called traitors) may give out their decryption keys to
construct pirate decoders, and some users (also called traitors) may directly
spread the decrypted contents over the Internet (known as anonymous attack
[15] or pirate rebroadcast [17]), the ability of traitor tracing is needed for broad-
cast encryption system. Traitor tracing scheme is used to discourage legitimate
subscribers from giving away their secret keys and decrypted contents. There-
fore, there are two kinds of traitor tracing schemes, i.e. schemes against pirate
decoders and schemes against pirate rebroadcast. In this paper, we focus on
traitor tracing against pirate decoders. The first traitor tracing scheme against
pirate decoders was presented by Chor, Fiat and Naor in [12]. Since then, many
works have been presented. Here, we discuss some of them in details.

1.1 Related Works on Traitor Tracing against Pirate Decoders

Since the introduction of traitor tracing by Chor, Fiat and Naor in [12], many
traitor tracing schemes against pirate decoders were proposed and they can be
roughly classified into three categories.

The first category is called combinatorial, as in [12, 26, 13, 22]. These schemes
carefully choose some subsets of keys to be put in each decryption box. By analyz-
ing the keys used in a pirate decoder, it is possible to trace one of the traitors. An-
other category is called algebraic, as in [19, 6, 23, 21, 8, 9, 14, 24]. These schemes
use algebraic method to assign private keys to users and the broadcasting can
be done in public since public-key techniques are used. Collusion secure codes
based schemes can be regarded as the third category, which combines ideas from
the two previous classes. For instance, [18, 10, 7, 3, 11] belong to this category.
These schemes assign keys to each user according to each bit of his/her code-
word. By analyzing the keys used in each bit positions, the tracer can recover
the codeword embedded in the decoder and trace back to at least one of the
traitors.

Some schemes [10, 9, 14, 24] allow public traceability, which means the tracing
can be performed by anyone and is not limited to the tracing authority.

When traitors are found, it is desirable to make them useless. However, not
all traitor tracing schemes support revocation. Many schemes merely consider
the tracing of traitors, and they do not consider the revocation of traitors. Some
schemes [23, 22, 9, 14] combine the tracing and revoking abilities to make the
schemes more practical.

Some works [16, 4] focus on attacks against traitor tracing schemes. Kiayias
and Pehlivanoglu [16] presented pirate evolution attack against schemes based
on subset-cover revocation framework [22]. In such attack, a traitor holding a

Traitor Tracing against Public Collaboration 3

number of keys can produces a number of generations of pirate decoders (called
pirate evolution) so that the system has to disable them generation by gen-
eration costly. Billet and Phan [4] presented new attack named “Pirates 2.0”
mainly against schemes based on traceability codes (collusion secure codes and
identifiable parent property codes) and schemes based on subset-cover revoca-
tion framework. The attack shows that users can release certain part of their
private keys in a public way, so that pirate decoders can be built from the public
information. Each traitor remains anonymous because a large number of users
contain the same keys as those released in public.

1.2 Our Contributions

In this paper, we describe a generic collusion secure codes based scheme se-
cure against public collaboration of traitors. Our scheme is motivated by the
idea of identity-based encryption with wildcards (WIBE). We take the tracing
code for each user as his/her identity, and issue private key accordingly. When
in broadcasting, we use a special pattern of WIBE, namely all bit positions in
the codewords of intended receivers are set as wildcards. When in tracing, we
use another special pattern of WIBE, namely all positions are set as wildcards
except the tracing position. By using WIBE, the decryption key for each user
should be used as a whole and any incomplete part of the key is useless. Thus,
our scheme is resistant to public collaboration, since any release of decryption
key as a whole will immediately leads to accusation of the very traitor. Our
generic scheme can be altered to adopt identifiable parent property codes with
a few adjustments. We present an instance based on Boneh-Boyen-Goh WIBE
scheme, in which storage cost for each user is constant. We also describe another
instance. Compared with the first instance, the second instance achieves shorter
ciphertexts on the expense of increasing public keys and private keys.

1.3 Organization

The remainder of this paper is organized as follows. Brief descriptions of our
building tools, namely collusion secure codes and identity-based encryption with
wildcards, are given in Section 2. In Section 3 protocol model and security re-
quirements for our traitor tracing scheme are defined. In Section 4, we describe
our idea and give out the generic tracing scheme against public collaboration.
Security analysis on our scheme and some extensions of our scheme are also given
in Section 4. Two instances based on Boneh-Boyen-Goh WIBE scheme and their
performances comparison with previous works are given in Section 5. Section 6
concludes the paper.

4 Xingwen Zhao, Fangguo Zhang

2 Building Tools

2.1 Collusion Secure Codes

We first review the definition of collusion secure codes required for constructing
our traitor tracing scheme. The definition is similar to that in [7].
– For a word w̄ ∈ {0, 1}L we write w̄ = w1 . . . wL, where wi ∈ {0, 1} is the ith

bit of w̄ for i = 1, . . . , L.
– Let W = {w̄(1), . . . , w̄(t)} be a set of words in {0, 1}L. We say that a word

w̄ ∈ {0, 1}L is feasible for W if for all i = 1, . . . , L there is a j ∈ {1, . . . , t}
such that w̄i = w̄

(j)
i . For example, if W consists of the two words (00

1
0

1
1

0
1

0
0),

then all words of the form [0 (10) 1 (01) 0] are feasible for W .
– For a set of words W ⊆ {0, 1}L we say that the feasible set of W , denoted

F (W), is the set of all words that are feasible for W .

The collusion secure code can be denoted with a pair of polynomial time algo-
rithms (G, T) defined as follows:

– Algorithm G, called a code generator is a probabilistic algorithm that takes
a pair (N , ε) as input, where N is the number of words to output and
ε ∈ (0, 1) is a security parameter. The algorithm outputs a pair (Γ , TK).
Here Γ (called a code) contains N words in {0, 1}L for some L > 0 (called
the code length). TK is called the tracing key.

– Algorithm T , called a tracing algorithm, is a deterministic algorithm that
takes as input a pair (w̄∗, TK) where w̄∗ ∈ {0, 1}L. The algorithm outputs
a subset S of {1, . . . , N}. Informally, elements in S are accused of creating
the word w̄∗.

The collusion resistant property of collusion secure code (G, T) is defined using
the following game between a challenger and an adversary. Let N be an integer
and ε ∈ (0, 1). Let C be a subset of {1, . . . , N}. Both the challenger and adversary
are given (N , ε, C) as input. Then the game proceeds as follows:
1. The challenger runs G(N , ε) to obtain (Γ , TK) where Γ = {w̄(1), . . . , w̄(N)}.

It sends the set W := {w̄(N)}i∈C to the adversary.
2. The adversary outputs a word w̄∗ ∈ F (W).

We say that the adversary A wins the game if T (w̄∗, TK) is empty or not
a subset of C. We denote Adv

A,G(N,ε),T,C
CR as the advantage that A wins the

collusion resistant game.

Definition 1. A collusion secure code (G,T) is said to be fully collusion resistant
if for all polynomial time adversaries A, all N > 0, all ε ∈ (0, 1), and all
C ⊆ {1, . . . , N}, we have Adv

A,G(N,ε),T,C
CR is negligible (less than ε).

A collusion secure code (G,T) is said to be t-collusion resistant if for all polyno-
mial time adversaries A, all N > t, all ε ∈ (0, 1), and all C ⊆ {1, . . . , N} of size
at most t, we have Adv

A,G(N,ε),T,C
CR is negligible (less than ε).

Our readers can refer to [7] for known results on collusion secure codes. Ad-
ditionally, Boneh and Naor [7] also constructed δ-robust Boneh-Shaw codes in
order to trace high error-rate pirate decoders.

Traitor Tracing against Public Collaboration 5

2.2 Identity-based Encryption with Wildcards

Identity-based encryption with wildcards (WIBE) [2] schemes, are a generaliza-
tion of hierarchical identity-based encryption (HIBE) [5] schemes. The sender in
WIBE can encrypt the messages to a range of users whose identities match a cer-
tain pattern. Such a pattern is described by a vector P = (P1 . . . , Pl) ∈ ({0, 1}∗∪
{∗})l, where ∗ is the wildcard symbol. If a user’s identity ID = (ID1, . . . , IDl′)
satisfies that l′ ≤ l and for all i = 1, . . . , l′ we have IDi = Pi or Pi = ∗, we say
that identity ID matches the pattern P (denoted as ID ∈∗ P). In other words,
in an identity-based encryption with wildcards, each user’s identity is arranged
in hierarchical structure and encryption can be made to a pattern of identity
with wildcards. For instance, an organization Org1 contains two offices Off1 and
Off2, and Alice and Bob belong to Off1. Then Alice obtains her identity as Al-
ice.Off1.Org1, and Bob’s identity is Bob.Off1.Org1. We can also assign other
identities, such as Manager.Off1.Org1 and Manager.Off2.Org1 to the managers
in both offices. If someone wants to send a message to Alice only, he/she can
encrypt the message on the pattern Alice.Off1.Org1. If the message is for all
persons in Off1, then the pattern will be ∗.Off1.Org1. If the message is for all
persons in Org1, then the pattern will be ∗.∗.Org1. If the message is for the
managers in both offices of Org1, then the pattern will be Manager.∗.Org1.

Formally, a WIBE scheme is a tuple of algorithms (WIBE.Setup, WIBE.KeyGen,
WIBE.Encrypt, WIBE.Decrypt) described as follows.

– WIBE.Setup(1λ). It is a probabilistic algorithm that given 1λ, generates
a master key pair (mpk, msk). It publishes the master public key mpk and
the trusted authority keeps the master secret key msk private.

– WIBE.KeyGen(msk, ID). It is a probabilistic algorithm (run by the trusted
authority) that given master secret key msk and user’s identity ID, gener-
ates a decryption key dID and sends this key over a secure and authenticated
channel to the user.

– WIBE.Encrypt(mpk, P , m). It is a probabilistic algorithm that given mas-
ter public key mpk, an identity patter P and the message m, generates a
ciphertext C.

– WIBE.Decrypt(mpk, P , C, dID). It is a deterministic algorithm that given
master public key mpk, an identity patter P , the ciphertext C and a user’s
decryption key dID, recovers the message m if ID ∈∗ P .

The security of WIBE scheme can be defined using the following IND-WID-CPA
game, which is played between a challenger and an adversary A:

1. The challenger generates a master key pair (mpk, msk)←WIBE.Setup(1λ).
2. The adversary A is given access to a key generation oracle that, on in-

put of an identity ID = (ID1, . . . , IDl), returns the secret key dID ←
WIBE.KeyGen(msk, ID) corresponding to that identity. The adversary
outputs two equal-length messages (m0,m1) and a challenge pattern P ∗.

3. The challenger chooses a random bit b ∈ {0, 1}, and computes the ciphertext
C∗ ← WIBE.Encrypt(mpk, P ∗, mb).

6 Xingwen Zhao, Fangguo Zhang

4. The adversary A who is given access to a key generation oracle as before,
on the input C∗, outputs a bit b′ ∈ {0, 1}.

The adversary wins the IND-WID-CPA game if b′ = b and it never queries the
key generation oracle on any identity ID which matches the pattern P ∗, i.e. any
identity ID ∈∗ P ∗. The adversary’s advantage is defined as AdvACPA=|Pr[b′ =
b]− 1/2|.
Definition 2. A (t, qK , ε)-adversary against the IND-WID-CPA security of the
WIBE scheme is an algorithm that runs in time at most t, makes at most qK

queries on key generation oracle, and has advantage at least ε in the IND-WID-
CPA game described above.

3 Protocol Model and Security Requirements

3.1 Protocol Model

The protocol model for our scheme consists of four algorithms (Setup, Encrypt,
Decrypt, Trace) described as follows.

– Setup(1λ, N). It is a probabilistic algorithm that given 1λ and the number of
users in the system N , outputs a public broadcast-key BK, a secret trace-key
TK, and the private user-key SKu for each user u ∈ {1, . . . , N}.

– Encrypt(BK, M). It is a probabilistic algorithm that given a broadcast-key
BK and a message M , a broadcast ciphertext C is generated.

– Decrypt(SKu, C). It is an algorithm that given a broadcast ciphertext C
and the private user-key SKu of user u, returns the recovered messages M
or ⊥.

– TraceD(TK). It is an algorithm that given a pirate decoder D and private
trace-key TK, it queries decoder D as a black-box oracle and then outputs
a traitor set T ⊆ {1, . . . , N}.

3.2 Security Requirements

– Correctness. Each honest user is able to recover the messages in normal
broadcasting.

– Semantic Security. The users cannot obtain any information of messages
encrypted in the broadcast ciphertext, if their identities do not matches the
encryption pattern. Semantic security is defined in a game similar to IND-
WID-CPA game for WIBE in Section 2.

– Collusion Resistant. Collusion of users cannot produce a decoder that
cannot be traced to any of these users.

The collusion resistant property of proposed traitor tracing scheme is
defined using the following game between a challenger and an adversary. Let
(G,T) be a collusion secure code. Let N be an integer and ε ∈ (0, 1). Then
the game proceeds as follows:

Traitor Tracing against Public Collaboration 7

1. The challenger runs G(N , ε) to obtain (Γ , TK) where Γ = {w̄(1), . . . , w̄(N)}
and w̄(i) is the codeword (and identity) for user i. The challenger also
selects a WIBE scheme with public parameters mpk. It sends Γ and mpk
to the adversary.

2. The adversary selects a subset of Γ , denoted as C. The adversary can
query the challenger for decryption keys of the codewords in C. The chal-
lenger generates the keys as in WIBE and gives them to the adversary.

3. The challenger asks the adversary to decrypt ciphertexts a number of
times and recovers a codeword w̄∗.

We say that the adversary A wins the game if T (w̄∗, TK) is empty or not a
subset of C.

– Resistant against Public Collaboration. Incomplete public collabora-
tion of traitors cannot generate useful keys for constructing pirate decoders.
Public collaboration of complete key from a traitor will immediately lead to
the accusation of the very traitor.

4 Traitor Tracing Scheme against Public Collaboration

In this section, we describe our generic code-based traitor tracing scheme secure
against public collaboration. We describe our idea firstly, and then present the
scheme. For brevity, we only describe a generic scheme based on collusion secure
code and scheme based on identifiable parent property code can be obtained by
simple adjustments. In the generic scheme, we assume the captured decoder is
a perfect and stateless decoder as in [7], i.e. it correctly decrypts well-formed
ciphertexts. Then we discuss imperfect decoder in Subsection 4.4.

4.1 Construction Idea

Our idea is motivated by the all-or-nothing transform method [25] and the idea
of identity-based encryption with wildcards.

In collusion secure code based traitor tracing schemes where all keys of each
user are used in decryption, such as [18, 10], only one bit (as tracing position)
of the codewords is checked in each round of tracing procedure, and the other
bits (as normal positions) are all enabled. That is to say, the tracer only requires
a valid key for each normal position and does not care about whether the key
corresponds to an “1” or a “0”. Therefore, we can regard the broadcasting or
tracing pattern as P = (P1, . . . , Pi, . . . , PL), where i is the tracing position, L
is the length of codewords and Pj is identity pattern for position j, j=1,. . . , L.
When in broadcasting, the pattern P = (∗, . . . , ∗, . . . , ∗), with tracing position
Pi and other normal positions are all wildcards. When in tracing, the pattern
P = (∗, . . . , (1/0), . . . , ∗), with tracing position Pi = 1 or 0 and other position
Pj = ∗, for each 1 ≤ j ≤ L, j 6= i. In other words, the ciphertext for Pi =
1 is different from the ciphertext for Pi = 0, so as to identify whether the ith
position of codeword embedded in the pirate decoder is an “1” or a “0”.

8 Xingwen Zhao, Fangguo Zhang

Therefore, when we assign a distinct collusion secure code to each user, we
can treat such code as each user’s identity. If the length of collusion secure code
is L, then we use L-level WIBE to assign private key to each user. For instance,
if a codeword w̄ ∈ {0, 1}L is assigned to a user, the trusted party in L-level
WIBE generates a decryption key associating with identity w̄ to this user. And
the user is allowed to decrypt messages designated for pattern P where w̄ ∈∗ P .
When in broadcasting, we use the pattern

P = (∗, . . . , (10), . . . , ∗)

where tracing position Pi = (10) and all other positions Pj = ∗ to encrypt the
message to all users. Pi = (10) means that both “1” and “0” are enabled in tracing
position i. (∗, . . . , (10), . . . , ∗) is equal to (∗, . . . , ∗) in WIBE scheme with identity
in each level satisfying IDi ∈ {0, 1} for i = 1, . . . , L. We use the pattern of this
form (∗, . . . , (10), . . . , ∗) so as to be consistent with the tracing pattern. When
in tracing, we use the pattern

P = (∗, . . . , 1, . . . , ∗)

with Pi = 1 to encrypt the message m to all users with 1 in ith position. Pi = 1
means only “1” is enabled in tracing position i. All users with 0 in ith position
will output a random message. We require that the ciphertext has the same form
no matter Pi = (10) or Pi = 1, which is easy to fulfill as follows: when Pi = (10)
there are two normal elements, one is for “1” and the other is for “0”; when
Pi = 1 there are two elements, one is normal element for “1” and the other is
a random element for “0”. If the pirate decoder outputs m, we decide that the
decoder contains a codeword w̄∗ with w̄∗i = 1. Otherwise, we decide that w̄∗i = 0
(for the perfect decoders. We will discuss imperfect decoders later). We repeat
the tracing algorithm a number of times (decided later) from bit 1 to bit L,
and recover the collusion secure codeword w̄∗ from the captured pirate decoder
D. By using the identifying algorithm T of collusion secure code, we eventually
obtain a set of traitors from the codeword w̄∗. Because of the provable security
of WIBE, each traitor should release his private key as a whole so as to be
useful for constructing pirate decoders. Thus our scheme is resistant to public
collaboration of traitors, since any release of the whole private key in public will
directly lead to the accusation of the very traitor.

4.2 Proposed Generic Scheme

Based on the building tools, namely collusion secure codes and identity-based
encryption with wildcards described in Section 2, we obtain a generic traitor
tracing scheme against public collaboration. The scheme is denoted by a tuple
of four algorithms (Setup, Encrypt, Decrypt, Trace) as follows.

– Setup(1λ, N). It is a probabilistic algorithm, in which a trusted party, given
1λ and the number of users in the system N , selects ε ∈ (0, 1) and runs
collusion secure code generation algorithm G(N , ε) to generate a pair (Γ ,

Traitor Tracing against Public Collaboration 9

TK). The set Γ = {w̄(1), . . . , w̄(N)} contains N codewords in {0, 1}L, where
L is the codeword length which is decided by total number of users N ,
collusion threshold t and ε (shown in Section 2). TK is the tracing key for
Γ . w̄(u) is assigned to user u as the identity, with 1 ≤ u ≤ N . The trusted
party selects a WIBE scheme and runs its WIBE.Setup(1λ) to generate a
master key pair (mpk, msk). The trusted party runs WIBE.KeyGen(msk,
w̄(u)) to generate decryption key SKu for each user u. Each decryption key
is transferred to user over a secure and authenticated channel which is not
considered in this paper. mpk is the master public key and also the broadcast-
key BK of the tracing scheme.

– Encrypt(BK, m). Anyone who wants to encrypt a message m to all users,
given the broadcast-key BK, selects random position i ∈ {1, . . . , L} to gen-
erate a pattern P = (P1, . . . , Pi, . . . , PL) = (∗, . . . , (10), . . . , ∗) and runs
WIBE.Encrypt(BK, P , m) to obtain a ciphertext C. (i, C) is broadcast
to all users.

– Decrypt(SKu, C). Given a broadcast ciphertext (i, C), user u constructs
pattern P ∗ as (P1, . . . , Pi, . . . , PL) = (∗, . . . , (10), . . . , ∗) and uses the private
user-key SKu to run WIBE.Decrypt(mpk, P ∗, C, dw̄(u)). User u returns
the recovered messages m or ⊥.

– TraceD(TK). Given a perfect pirate decoder D, the trusted party queries
decoder D as a black-box oracle. For i = 1, . . . , L, the trusted party acts as
follows:
1. generates pattern P as (P1, . . . , Pi, . . . , PL) = (∗, . . . , 1, . . . , ∗), where

Pi = 1;
2. runs WIBE.Encrypt(BK, P , m) to obtain a ciphertext C. (i, C) is fed

to the decoder;
3. if the pirate decoder outputs m, the trusted party decides that the de-

coder contains a codeword w̄∗ with w̄∗i = 1. Otherwise, w̄∗i = 0.
As we notice that, the decoder will construct the pattern P ∗ as (∗, . . . , (10),
. . . , ∗) and decrypt as normal. However, our encryption pattern is P = (∗,
. . . , 1, . . . , ∗), so that only decoders with w̄∗ ∈∗ P can recover the message
m. Decoders with w̄∗ ∈∗ (∗, . . . , 0, . . . , ∗) will return a random message
other than m. After the trusted party obtains the recovered codeword w̄∗

= w̄∗1 . . . w̄∗L, it runs the tracing algorithm of collusion secure code as T(w̄∗,
TK) and outputs a set of traitors T ⊆ {1, . . . , N}.

We require that collusion secure code (G, T) is fully collusion resistant (resp. t-
collusion resistant) in order for our generic scheme to be fully collusion resistant
(resp. t-collusion resistant). We also require that WIBE scheme is correct and
secure against IND-WID-CPA game.

4.3 Security Analysis

Correctness. The correctness is straightforward due to the correctness of WIBE
scheme.

10 Xingwen Zhao, Fangguo Zhang

Theorem 1. The generic traitor tracing scheme is semantically secure assum-
ing the WIBE scheme is semantically secure.

Proof: We suppose the semantic security game of our traitor tracing scheme is
played between a challenger CHTT and an adversary ADVTT . They interact as
follows:

1. When ADVTT initials the game, CHTT initials IND-WID-CPA game of
WIBE and acts as the adversary ADVWIBE in IND-WID-CPA game. When
the challenger CHWIBE in IND-WID-CPA game returns mpk, CHTT for-
wards it to ADVTT .

2. When ADVTT queries decryption key for an identity ID ∈ {0, 1}L, CHTT

forwards the query to CHWIBE , and then forwards to ADVTT the decryption
key returned by CHWIBE . When ADVTT outputs two equal-length messages
(m0,m1) and a tracing pattern Pi with i ∈ {1, . . . , L}, CHTT constructs a
pattern P ∗ = (P1, . . . , Pi, . . . , PL) = (∗, . . . , Pi, . . . , ∗) and forwards
(m0,m1, P ∗) to CHWIBE . In this step, we require that ADVTT has not
queried key generation oracle on any identity ID ∈∗ P ∗. For instance, if
Pi = (10), we require ADVTT has not queried key generation oracle on any
codeword; if Pi = 1, we require ADVTT has not queried key generation oracle
on any codewords with w̄∗i = 1.

3. When CHWIBE returns the challenging ciphertext C∗, CHTT forwards it
to ADVTT with the form (i, C∗).

4. ADVTT is allowed to access the key generation oracle as Step 2, with the re-
quirement that ADVTT does not query key generation oracle on any identity
ID ∈∗ P ∗. Finally, ADVTT outputs a bit b′ ∈ {0, 1} and CHTT forwards b′

to CHWIBE as the answer for the challenge of IND-WID-CPA game.

Our scheme uses the special pattern of WIBE to encrypt messages. If the adver-
sary has advantage to break the semantic security of our traitor tracing scheme,
then it can be used to break the semantic security of WIBE with the same ad-
vantage. ut
Theorem 2. The generic traitor tracing scheme is t-collusion resistant assum-
ing WIBE is secure against IND-WID-CPA game and collusion secure code (G,
T) is t-collusion resistant.

Proof: The t-collusion resistant game of our proposed scheme is played between
a challenger B and an adversary A as described in Section 3.

Let (G,T) be a collusion secure code. Let N be an integer and ε ∈ (0, 1).
The challenger runs G(N , ε) to obtain (Γ , TK) where Γ = {w̄(1), . . . , w̄(N)} and
w̄(i) is the codeword (and identity) for user i. The challenger also selects a WIBE
scheme with public parameters mpk. It sends Γ and mpk to the adversary. Then,
the adversary selects a subset of Γ , denoted as C. The adversary can query the
challenger for decryption keys of the codewords in C. The challenger generates
the keys as in WIBE and gives them to the adversary.

When it is time for the challenger to query the adversary on decryptions,
for the tracing position i = 1, . . . , L, the challenger queries the adversary with

Traitor Tracing against Public Collaboration 11

message m encrypted in the pattern P = (P1, . . . , Pi, . . . , PL) = (∗, . . . , 1, . . . ,
∗), where Pi = 1. There are three cases for the decoder:

– Case 1: All codewords held by the adversary contain “1” in tracing posi-
tion i. Since all codewords match the encryption pattern P , the adversary
will always output m′ = m. The recovered bit w̄∗i will always be 1. Since
the adversary does not contain “0” in tracing position i, the probability
that the adversary outputs “0” is less than AdvACPA, the probability that
the adversary breaks the IND-WID-CPA game (so as to distinguish normal
broadcasting ciphertext and tracing ciphertext).

– Case 2: All codewords held by the adversary contain “0” in tracing position
i. As we proved in Theorem 1, the adversary will always output a random
message other than m since the codewords do not match pattern P . The
probability that the adversary outputs the right m is at most 1/|M|, where
|M| is the number of messages in the message space. The recovered bit w̄∗i
will be 1 with probability at most 1/|M|;

– Case 3: The codewords held by the adversary contain both “0” and “1” in
tracing position i. No matter whatever the adversary outputs, w̄∗i must be
in the feasible set of W .

Therefore, the final recovered codeword w̄∗ ∈ F (W). From the assumption that
collusion secure code (G, T) is t-collusion resistant, the probability that T (w̄∗,
TK) is empty or not a subset of W is less than ε. Thus, the probability that
the adversary breaks the property of t-collusion resistance of our generic traitor
tracing scheme is less than L ·AdvACPA + L/|M| + ε. ut

When t = N , our generic scheme is fully collusion resistant.

Theorem 3. Our generic traitor tracing scheme is resistant against public col-
laboration.

Proof: (Sketch Proof.) As we described in security requirements in Section 3,
we will prove this property in 2 phases. First, we prove that incomplete public
collaboration of traitors cannot generate useful keys for constructing pirate de-
coders. Then, we prove that public collaboration of complete key from a traitor
will immediately lead to the accusation of the very traitor.

Phase 1. Each user’s identity is a codeword of length L. The decryption key
is generated for this very codeword. Incomplete public collaboration means a
traitor releases part of decryption key in a public way, so this released part of
decryption key is not valid in at least 1 bit position of the encryption pattern.
As required by our encryption pattern (∗, . . . , ∗)L, the decryption key must be
valid in all L positions. Thus, this released part of decryption key is not use-
ful for its original codeword. If several parts of incomplete decryption key are
able to construct a useful pirate decoder, it presents a contradiction to Theorem
1, in which the adversary with many complete decryption keys cannot obtain
information of message encrypted for other codewords, and the adversary with-
out any decryption key cannot obtain information of message encrypted for any

12 Xingwen Zhao, Fangguo Zhang

codeword.

Phase 2. If a user releases his/her decryption key as a whole, he/she may release
the whole codeword as well. If the codeword is released, the tracer can imme-
diately find out the identity by using the tracing algorithm of collusion secure
code T and tracing key TK. If no codeword is released, the valid decryption key
without the corresponding codeword can recover the correct message with prob-
ability 1/2 (such WIBE scheme may exist). The tracer can treat the decryption
key as imperfect pirate decoder and use the method described in the SubSection
4.4 to recover the codeword and then trace to the owner. Or the tracer can test
the codeword via 2L rounds of computation. ut

4.4 Tracing Imperfect Pirate Decoders

Boneh and Naor [7] described a method to trace against imperfect pirate de-
coders. Their method can also be modified and applied in our scheme to enable
such feature. The method is briefly described as follows.

Let δ be the probability that imperfect pirated decoder D fails to decrypt
well-formed ciphertexts. Let M be the message space. m′ ← D(C) denotes that
decoder D outputs m′ on input C. For i = 1, . . . , L, the tracing algorithm is
defined as follows:

Traitor Tracing against Public Collaboration 13

repeat the following steps λ lnL times:

m
R←−M

P ← (∗, . . . , (10), . . . , ∗), where Pi = (10)
c ← WIBE.Encrypt(BK,P, m)

C ← (i, c)
m′ ← D(C)

let pi be the fraction of times that m′ = m;

repeat the following steps λ lnL times:

m
R←−M

P ∗ ← (∗, . . . , 1, . . . , ∗), where P ∗i = 1
c∗ ← WIBE.Encrypt(BK,P ∗,m)

C∗ ← (i, c∗)
m′ ← D(C∗)

let qi be the fraction of times that m′ = m.

Define w̄∗i ∈ {0, 1} as:

w̄∗i =





1 if qi > 0
0 if qi = 0 and pi > 0
‘?’ otherwise

and w̄∗ = w̄∗1 . . . w̄∗L. By using the δ-robust collusion secure code presented in [7]
we obtain a tracing scheme that can trace imperfect pirate decoders as long as

δ < (1/L)− (1/λ).

For details about tracing imperfect pirate decoders and constructing δ-robust
collusion secure codes, please refer to [7].

4.5 Extension to Identifiable Parent Property Codes

The proposed generic scheme can be easily turned into a traitor tracing scheme
based on identifiable parent property (IPP) codes against public collaboration.
For a q-ary IPP code, what we need to do is to use IPP code as user’s identity
and allow q symbols in each hierarchical position in encryption, decryption and
tracing algorithms, instead of (1, 0) for collusion secure codes. The number of
tracing rounds may increase by a factor of log q.

14 Xingwen Zhao, Fangguo Zhang

5 Two Instances and Performance Evaluation

In this section, we present two instance of traitor tracing scheme based on col-
lusion secure code against public collaboration. Our first instance is constructed
from Boneh-Boyen-Goh WIBE scheme described in [1], achieving constant length
of private keys for each user. The second instance achieves shorter ciphertexts at
the expenses of increasing public keys and private keys. Then we compare their
performances with several collusion secure code based tracing schemes.

5.1 An Instance Based on Boneh-Boyen-Goh WIBE

Let G1, G2 and GT be bilinear groups of some large prime order p and let
e : G1 × G2 7→ GT be a bilinear map. We also assume that the messages to be
encrypted are elements in Zp. The traitor tracing scheme works as follows:

– Setup(1λ, N). A trusted party, given 1λ and the number of users in the
system N , selects ε ∈ (0, 1) and runs collusion secure code generation algo-
rithm G(N , ε) to generate a pair (Γ , TK). The set Γ = {w̄(1), . . . , w̄(N)}
contains N codewords in {0, 1}L, where L is the codeword length. TK is the
tracing key for Γ . w̄(u) is assigned to user u as the identity, with 1 ≤ u ≤ N .
A random generator g ∈R G2 and random number α ∈R ZP are selected.
Let g1 = gα. H(·) : {1 . . . L} × {0, 1} → Zp and H2(·) : GT → Zp are two
collision resistant hash functions (the selection is out of scope of this paper).
Random elements g2, g3, h1, . . . , hL are selected from G1. The master public
parameters (also the broadcast-key BK) are (g, g1, g2, g3, h1, . . . , hL, H(·),
H2(·)). gα

2 is kept private. For each identity w̄(u) of user u ∈ {1, . . . , N}, w̄(u)

can be expressed as (w̄(u)
1 . . . w̄

(u)
L) ∈ {0, 1}L. The trusted party generates

decryption key for each user u as:

SKu = (du,0, du,1) = (gα
2 · (hH(1,w̄

(u)
1)

1 . . . h
H(L,w̄

(u)
L)

L · g3)r, gr).

Each decryption key is transferred to user over a secure and authenticated
channel which is not considered in this paper.

– Encrypt(BK, m). Given the broadcast-key BK and a message m ∈ Zp, the
sender selects random position i ∈ {1, . . . , L} to generate a pattern P = (P1,
. . . , Pi, . . . , PL) = (∗, . . . , (10), . . . , ∗). The senders selects s1, s0 ∈R Zp,
encrypts m as follows:

C1 = (C(1)
1 , C

(0)
1) = (gs1 , gs0);

C2 = (C(1)
2 , C

(0)
2) = ((g3 · hH(i,1)

i)s1 , (g3 · hH(i,0)
i)s0);

C3 = (C(1)
3 , C

(0)
3) = (m⊕H2(e(g2, g1)s1),m⊕H2(e(g2, g1)s0));

C4 = (C(1)
4 , C

(0)
4)

= (C(1)
4,1 , . . . , C

(1)
4,i−1, C

(1)
4,i+1, . . . , C

(1)
4,L, C

(0)
4,1 , . . . , C

(0)
4,i−1, C

(0)
4,i+1, . . . , C

(0)
4,L)

= (hs1
1 , . . . , hs1

i−1, h
s1
i+1, . . . , h

s1
L , hs0

1 , . . . , hs0
i−1, h

s0
i+1, . . . , h

s0
L),

Traitor Tracing against Public Collaboration 15

where (C(1)
1 , C

(1)
2 , C

(1)
3 , C

(1)
4) are for Pi = 1, and others are for Pi = 0. The

ciphertext (i, C1, C2, C3, C4) is sent to all users.
– Decrypt(SKu, C). Parses the SKu as (du,0, du,1) and the ciphertext as

described above, user u decrypts as follows (we use b to denote w̄
(u)
i):

C ′2 = C
(b)
2 ·

L∏

j=1,j 6=i

(C(b)
4,j)

H(j,w̄
(u)
j) = (g3 ·

L∏

j=1

h
H(j,w̄

(u)
j)

j)sb ;

T =
e(du,0, C

(b)
1)

e(C ′2, du,1)
=

e(gα
2 (hH(1,w̄

(u)
1)

1 . . . h
H(L,w̄

(u)
L)

L · g3)r, gsb)

e((g3 ·
∏L

j=1 h
H(j,w̄

(u)
j)

j)sb , gr)

= e(gα
2 , gsb) = e(g2, g1)sb ;

m = C
(b)
3 ⊕H2(T).

– TraceD(TK). Given a perfect pirate decoder D, the trusted party queries
decoder D as a black-box oracle. For i = 1, . . . , L, the tracing pattern is P
= (P1, . . . , Pi, . . . , PL) = (∗, . . . , 1, . . . , ∗) with Pi = 1. The trusted party
selects s1, s0 ∈R Zp, a message m ∈ Zp and a random element R ∈R Zp and
acts as algorithm Encrypt, except that C

(0)
3 is replaced by R.

C1 = (C(1)
1 , C

(0)
1) = (gs1 , gs0);

C2 = (C(1)
2 , C

(0)
2) = ((g3 · hH(i,1)

i)s1 , (g3 · hH(i,0)
i)s0);

C3 = (C(1)
3 , C

(0)
3) = (m⊕H2(e(g2, g1)s1), R);

C4 = (C(1)
4 , C

(0)
4)

= (C(1)
4,1 , . . . , C

(1)
4,i−1, C

(1)
4,i+1, . . . , C

(1)
4,L, C

(0)
4,1 , . . . , C

(0)
4,i−1, C

(0)
4,i+1, . . . , C

(0)
4,L)

= (hs1
1 , . . . , hs1

i−1, h
s1
i+1, . . . , h

s1
L , hs0

1 , . . . , hs0
i−1, h

s0
i+1, . . . , h

s0
L),

(i, C1, C2, C3, C4) is fed to the decoder. If the pirate decoder outputs
m, the trusted party decides that the decoder contains a codeword w̄∗ with
w̄∗i = 1. Otherwise, w̄∗i = 0. When tracing on all positions is completed,
the recovered codeword w̄∗ = (w̄∗1 . . . w̄∗L) is put to tracing algorithm for
collusion secure code T(w̄∗, TK) to obtain a set of traitors T ⊆ {1, . . . , N}.

5.2 An Instance with Shorter Ciphertexts

If the length of WIBE ciphertexts is L, our first instance achieves roughly 2L
ciphertexts. However, if the instance employs a q-ary IPP code, the length of
ciphertexts will be roughly qL. Here, we describe another instance based on col-
lusion resistant code, achieving roughly L ciphertexts, on the expense of adding
2 elements in public keys and 2 elements in private keys. The instance can be
extended to q-ary IPP code with a few adjustments, achieving ciphertexts length
of roughly L + 2q, on the expense of adding 2(q-1) elements in public keys and
2(q-1) elements in private keys compared with instance 1.

16 Xingwen Zhao, Fangguo Zhang

Let G1, G2 and GT be bilinear groups of some large prime order p and let
e : G1 × G2 7→ GT be a bilinear map. We also assume that the messages to be
encrypted are elements in Zp. The traitor tracing scheme works as follows:

– Setup(1λ, N). A trusted party, given 1λ and the number of users in the
system N , selects ε ∈ (0, 1) and runs collusion secure code generation algo-
rithm G(N , ε) to generate a pair (Γ , TK). The set Γ = {w̄(1), . . . , w̄(N)}
contains N codewords in {0, 1}L, where L is the codeword length. TK is the
tracing key for Γ . w̄(u) is assigned to user u as the identity, with 1 ≤ u ≤ N .
A random generator g ∈R G2 and random number α ∈R ZP are selected.
Let g1 = gα. H(·) : {1 . . . L} × {0, 1} → Zp and H2(·) : GT → Zp are two
collision resistant hash functions (the selection is out of scope of this pa-
per). Random elements g2, g3, g4, g5, h1, . . . , hL are selected from G1. The
master public parameters (also the broadcast-key BK) are (g, g1, g2, g3, g4,
g5, h1, . . . , hL, H(·), H2(·)). (gα

2 , gα
4) is kept private. For each identity w̄(u)

of user u ∈ {1, . . . , N}, w̄(u) can be expressed as (w̄(u)
1 . . . w̄

(u)
L) ∈ {0, 1}L.

The trusted party selects two random number r1, r0 ∈R Zp and generates
decryption key for each user u as:

SKu = (d(1)
u,1, d

(1)
u,0, d

(0)
u,1, d

(0)
u,0)

= (gα
2 · (hH(1,w̄

(u)
1)

1 . . . h
H(L,w̄

(u)
L)

L · g3)r1 , gr1 ,

gα
4 · (hH(1,w̄

(u)
1)

1 . . . h
H(L,w̄

(u)
L)

L · g5)r0 , gr0).

Each decryption key is transferred to user over a secure and authenticated
channel which is not considered in this paper.

– Encrypt(BK, m). Given the broadcast-key BK and a message m ∈ Zp, the
sender selects random position i ∈ {1, . . . , L} to generate a pattern P = (P1,
. . . , Pi, . . . , PL) = (∗, . . . , (10), . . . , ∗). The senders selects s ∈R Zp, encrypts
m as follows:

C1 = gs;

C2 = (C(1)
2 , C

(0)
2) = ((g3 · hH(i,1)

i)s, (g5 · hH(i,0)
i)s);

C3 = (C(1)
3 , C

(0)
3) = (m⊕H2(e(g2, g1)s),m⊕H2(e(g4, g1)s));

C4 = (C4,1, . . . , C4,i−1, C4,i+1, . . . , C4,L)
= (hs

1, . . . , h
s
i−1, h

s
i+1, . . . , h

s
L),

where C
(1)
2 and C

(1)
3 are for Pi = 1, and C

(0)
2 and C

(0)
3 are for Pi = 0. The

ciphertext (i, C1, C2, C3, C4) is sent to all users.
– Decrypt(SKu, C). Parses the SKu and the ciphertext as described above,

user u decrypts as follows (we use b to denote w̄
(u)
i). The following example

Traitor Tracing against Public Collaboration 17

is for the case b = 1:

C ′2 = C
(b)
2 ·

L∏

j=1,j 6=i

(C4,j)H(j,w̄
(u)
j) = (g3 ·

L∏

j=1

h
H(j,w̄

(u)
j)

j)s;

T =
e(d(b)

u,1, C1)

e(C ′2, d
(b)
u,0)

=
e(gα

2 (hH(1,w̄
(u)
1)

1 . . . h
H(L,w̄

(u)
L)

L · g3)rb , gs)

e((g3 ·
∏L

j=1 h
H(j,w̄

(u)
j)

j)s, grb)

= e(gα
2 , gs) = e(g2, g1)s;

m = C
(b)
3 ⊕H2(T).

When b = 0, T will be e(g4, g1)s.

– TraceD(TK). Given a perfect pirate decoder D, the trusted party queries
decoder D as a black-box oracle. For i = 1, . . . , L, the tracing pattern is P
= (P1, . . . , Pi, . . . , PL) = (∗, . . . , 1, . . . , ∗) with Pi = 1. The trusted party
selects s ∈R Zp, a message m ∈ Zp and a random element R ∈R Zp and acts
as algorithm Encrypt, except that C

(0)
3 is replaced by R.

C1 = gs;

C2 = (C(1)
2 , C

(0)
2) = ((g3 · hH(i,1)

i)s, (g5 · hH(i,0)
i)s);

C3 = (C(1)
3 , C

(0)
3) = (m⊕H2(e(g2, g1)s), R);

C4 = (C4,1, . . . , C4,i−1, C4,i+1, . . . , C4,L)
= (hs

1, . . . , h
s
i−1, h

s
i+1, . . . , h

s
L),

(i, C1, C2, C3, C4) is fed to the decoder. If the pirate decoder outputs
m, the trusted party decides that the decoder contains a codeword w̄∗ with
w̄∗i = 1. Otherwise, w̄∗i = 0. When tracing on all positions is completed,
the recovered codeword w̄∗ = (w̄∗1 . . . w̄∗L) is put to tracing algorithm for
collusion secure code T(w̄∗, TK) to obtain a set of traitors T ⊆ {1, . . . , N}.

5.3 Performance Evaluation

In Table 1 we compare our instances with several collusion secure code based
schemes mainly on decryption key (storage cost for each user), ciphertext length,
encryption computations, and decryption computations. We assume that all
schemes use collusion secure codes of a same length L. Since schemes in [7]
and [3] did not mention the public key encryption scheme used for each posi-
tion, we suppose both schemes used secure ElGamal encryption scheme over a
cyclic group of order p, where p is a large strong prime.

From Table 1, we notice that our scheme achieves constant private key
storage cost for each user, while other schemes need storage cost linear to L, the
length of codeword. We should notice that, our scheme only encrypt one message
in each broadcasting and we can encrypt L messages by adding 2L-2 elements
in Zp.

18 Xingwen Zhao, Fangguo Zhang

Table 1. Comparison with Previous Works

Public Key Private
Key

Ciphertext
Length

Encryption
Computation

Decryption
Computation

Public
Collaboration

Resistant
[18] 2LG1 LZp 2LG1 L(2E1+ 1M) L(1E1+ 2M) No
[10] 1G1+

(L+1)GT

LZp+
LG1

2G1+ LGT LET + 2M L(M+ 2P) No

[7] 2LG1 LZp 1Zp+ 2G1 (2E+ 1M) (1E+ 2M) No
[3] 2LG1 LZp u(1Zp+ 2G1) u(2E+ 1M) u(1E+ 2M) No
[11] (2L+1)G1 (L+2)Zp 2Zp+ (L+2)G1 (3E+1M) (2E+2M) No

Instance
1

(L+2)G1+
2G2

1G1+ 1G2 2LG1+ 2G2+
3Zp

2(L+1)E1+
2M+2E2+2ET

(L-1)E1 +
(L-1)M

+2P+1MT

Yes

Instance
2

(L+4)G1+
2G2

2G1+ 2G2 (L+1)G1+
1G2+ 2Zp

(L+3)E1+
2M+1E2+2ET

(L-1)E1 +
(L-1)M

+2P+1MT

Yes

L: the length of codeword;
u: the number of codeword positions used in encryption [3];
G1: element in G1; G2: element in G2; GT : element in GT ;
Zp: element in Zp; P: pairing in G;
E1: exponentiation in G1; E2: exponentiation in G2;
M: multiplication (or division) in G1;
MT : multiplication (or division) in GT .

Our scheme is roughly comparable to schemes [18, 10] employing All-or-
Nothing Transform [25], where the decoder should include one valid key for each
position of the codeword in order to recover the final messages. All-or-Nothing
Transform means that the decoder should contain one complete codeword of
length L with at least L decryption keys covering all the positions in the code-
word in order to decrypt all L parts of ciphertext, since the decoder obtains
nothing if it fails to decrypt any part of ciphertext. However, All-or-Nothing
Transform can only prevent deletion of keys from the pirate decoders but can-
not prevent public collaborations.

We also notice that Schemes [7, 3, 11] are efficient in ciphertext length, en-
cryption computation and decryption computation. It is because they encrypt
the message using only one position [7, 11] (or constant number of positions [3])
in the broadcasting. However, it means that only one key is needed to construct a
useful pirate decoder with decrypting probability of 1/L in schemes [7, 11], and u
keys are needed to construct a useful pirate decoder with decrypting probability
of 1/(L

u) in scheme [3], where (L
u) denotes the number of ways of choosing u out

of L positions. Hence, the ability of traitors to produce useful but untraceable
pirate decoders is greatly increased.

Traitor Tracing against Public Collaboration 19

6 Conclusion and Extension

Motivated by the idea of identity-based encryption with wildcards (WIBE), we
describe a generic collusion secure codes based scheme secure against public
collaboration. The construction idea also works for identifiable parent property
codes. The instances proposed in Section 5 are roughly comparable in efficiency
to codes based traitor tracing schemes employing All-or-Nothing Transform.
Thus, our scheme presents an answer to the problem left open by Billet and
Phan [4].

From our idea described in SubSection 4.1, each WIBE scheme can be al-
tered to obtain a code-based traitor tracing scheme, so we can obtain a scheme
secure in standard model from the WIBE presented in [20].

To extend our scheme to adopt identifiable parent property codes, one can
adjust the parameters to accept multiple alphabets in each hierarchical level.

It was stated by Billet and Phan in [3] as an open problem whether codes
based tracing schemes can achieve revocation capabilities or not. We can solve
this open problem by combining our traitor tracing scheme with an identity-
based broadcast encryption scheme allowing revocation, since they both are
special cases of identity-based encryption.

Acknowledgements

The authors would like to thank the anonymous reviewers of ISPEC 2011 for
their comments on the paper and thank Fuchun Guo for discussion on the earlier
version of this paper.

References

1. Abdalla, M., Birkett, J., Catalano, D., Dent, A., Malone-Lee, J., Neven, G.,
Schuldt, J., Smart, N.: Wildcarded identity-based encryption. Journal of Cryp-
tology pp. 1–41 (2010)

2. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP (2). Lecture Notes in Computer Science, vol. 4052, pp.
300–311. Springer (2006)

3. Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure codes. In:
Safavi-Naini, R. (ed.) ICITS. Lecture Notes in Computer Science, vol. 5155, pp.
171–182. Springer (2008)

4. Billet, O., Phan, D.H.: Traitors collaborating in public: Pirates 2.0. In: Joux, A.
(ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 5479, pp. 189–205.
Springer (2009)

5. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: EUROCRYPT. pp. 440–456 (2005)

6. Boneh, D., Franklin, M.K.: An efficient public key traitor tracing scheme. In:
CRYPTO. pp. 338–353 (1999)

20 Xingwen Zhao, Fangguo Zhang

7. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Ning, P.,
Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer and Communications
Security. pp. 501–510. ACM (2008)

8. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: EUROCRYPT. pp. 573–592 (2006)

9. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: ACM Conference on Computer and Communications Security. pp. 211–
220 (2006)

10. Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing
schemes. In: EUROCRYPT. pp. 542–558 (2005)

11. Chen, Y.R., Tzeng, W.G.: A public-key traitor tracing scheme with an optimal
transmission rate. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS. Lecture
Notes in Computer Science, vol. 5927, pp. 121–134. Springer (2009)

12. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: CRYPTO. pp. 257–270 (1994)
13. Fiat, A., Tassa, T.: Dynamic traitor training. In: CRYPTO. pp. 354–371 (1999)
14. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient

fully collusion-resilient traitor tracing and revocation schemes. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Com-
munications Security. pp. 121–130. ACM (2010)

15. Jin, H., Lotspiech, J., Nusser, S.: Traitor tracing for prerecorded and recordable
media. In: Digital Rights Management Workshop. pp. 83–90 (2004)

16. Kiayias, A., Pehlivanoglu, S.: Pirate evolution: How to make the most of your
traitor keys. In: CRYPTO. pp. 448–465 (2007)

17. Kiayias, A., Pehlivanoglu, S.: Tracing and revoking pirate rebroadcasts. In: Ab-
dalla, M., Pointcheval, D., Fouque, P.A., Vergnaud, D. (eds.) ACNS. Lecture Notes
in Computer Science, vol. 5536, pp. 253–271 (2009)

18. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: EURO-
CRYPT. pp. 450–465 (2002)

19. Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes. In:
EUROCRYPT. pp. 145–157 (1998)

20. MING, Y., SHEN, X., WANG, Y.: Identity-based encryption with wildcards in the
standard model. The Journal of China Universities of Posts and Telecommunica-
tions 16(1), 64–68, 80 (2009)

21. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE transactions
on fundamentals of electronics, communications and computer sciences E85-A(2),
481–484 (2002-02-01)

22. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO. Lecture Notes in Computer Science, vol.
2139, pp. 41–62. Springer (2001)

23. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Financial Cryptogra-
phy. pp. 1–20 (2000)

24. Park, J.H., Lee, D.H.: Fully collusion-resistant traitor tracing scheme with
shorter ciphertexts. Designs, Codes and Cryptography pp. 1–22 (2010), dOI:
10.1007/s10623-010-9431-7.

25. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E.
(ed.) FSE. Lecture Notes in Computer Science, vol. 1267, pp. 210–218. Springer
(1997)

26. Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)

