Abstract
Macaulay and Dixon resultant formulations are proposed for parametrized multivariate polynomial systems represented in Bernstein basis. It is proved that the Macaulay resultant for a polynomial system in Bernstein basis vanishes for the total degree case if and only if the either the polynomial system has a common Bernstein-toric root, a common infinite root, or the leading forms of the polynomial system obtained by replacing every variable x i in the original polynomial system by \(\frac{y_i}{1+y_i}\) have a non-trivial common root. For the Dixon resultant formulation, the rank sub-matrix constructions for the original system and the transformed system are shown to be essentially equivalent. Known results about exactness of Dixon resultants of a sub-class of polynomial systems as discussed in Chtcherba and Kapur in Journal of Symbolic Computation (August, 2003) carry over to polynomial systems represented in the Bernstein basis. Furthermore, in certain cases, when the extraneous factor in a projection operator constructed from the Dixon resultant formulation is precisely known, such results also carry over to projection operators of polynomial systems in the Bernstein basis where extraneous factors are precisely known. Applications of these results in the context of geometry theorem proving, implicitization and intersection of surfaces with curves are discussed. While Macaulay matrices become large when polynomials in Bernstein bases are used for problems in these applications, Dixon matrices are roughly of the same size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amiraslani, A.: Dividing polynomials when you only know their values. In: Gonzalez-Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Computacional y Aplicaciones (EACA) 2004, pp. 5–10 (2004)
Barnett, S.: Polynomials and linear control systems. Monographs and Textbooks in Pure and Applied Mathematics, vol. 77. Marcel Dekker Inc., New York (1983)
Barnett, S.: Division of generalized polynomials using the comrade matrix. Linear Algebra Appl. 60, 159–175 (1984)
Barnett, S.: Euclidean remainders for generalized polynomials. Linear Algebra Appl. 99, 111–122 (1988)
Berchtold, J., Bowyer, A.: Robust arithmetic for multivariate bernstein-form polynomials. In: Computer-Aided Design, pp. 681–689 (2000)
Bini, D.A., Gemignani, L.: Bernstein-Bezoutian matrices. Theoret. Comput. Sci. 315(2-3), 319–333 (2004)
Bini, D.A., Gemignani, L., Winkler, J.R.: Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis. Numer. Linear Algebra Appl. 12(8), 685–698 (2005)
Brazier, M., Chcherba, A.: MatDetInterp. Symbolic matrix determinant interpolator, http://www.chtcherba.com/arthur/Projects/MatDetInterp/
Busé, L., Elkadi, M., Mourrain, B.: Generalized resultants over unirational algebraic varieties. J. Symbolic Computation 29(4-5), 515–526 (2000)
Canny, J.: Generalised characteristic polynomials. J. Symbolic Computation 9, 241–250 (1990)
Cheng, H., Labahn, G.: On computing polynomial GCDs in alternate bases. In: ISSAC 2006, pp. 47–54. ACM, New York (2006)
Chtcherba, A., Kapur, D.: Exact resultants for corner-cut unmixed multivariate polynomial systems using the Dixon formulation. J. Symbolic Computation 36(3-4), 289–315 (2003)
Chtcherba, A.D., Kapur, D., Minimair, M.: Cayley-dixon resultant matrices of multi-univariate composed polynomials. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 125–137. Springer, Heidelberg (2005)
Chtcherba, A.D.: A new Sylvester-type Resultant Method based on the Dixon-Bézout Formulation. PhD dissertation, University of New Mexico, Department of Computer Science (August 2003)
Chtcherba, A.D., Kapur, D.: Conditions for determinantal formula for resultant of a polynomial system. In: ISSAC 2006: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, Genoa, Italy, pp. 55–62. ACM, New York (2006), doi:10.1145/1145768.1145784
Corless, R.: Generalized companion matrices in the lagrange basis. In: Gonzalez-Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Computacional y Aplicaciones (EACA) 2004, pp. 317–322 (2004)
Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, Heidelberg (1998)
D’Andrea, C.: Macaulay style formulas for sparse resultants. Trans. Amer. Math. Soc. 354(7), 2595–2629 (electronic) (2002)
Devore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Heidelberg (1993)
Diaz-Toca, G.M., Gonzalez-Vega, L.: Barnett’s theorems about the greatest common divisor of several univariate polynomials through Bezout-like matrices. J. Symbolic Comput. 34(1), 59–81 (2002)
Dixon, A.-L.: On a form of the elimination of two quantics. Proc. London Math. Soc. 6, 468–478 (1908)
Farin, G.F.: Curves and Surfaces for CAGD: A practical guide, 5th edn. Morgan Kaufmann, San Francisco (1991)
Gemignani, L.: Manipulating polynomials in generalized form. Tech. Rep. TR-96-14, Università di Pisa, Departmento di Informatica, Corso Italia 40, 56125 Pisa, Italy (December 1996)
Heymann, W.: Problem der Winkelhalbierenden. Ztschr. f. Math. und Phys. 35 (1890)
Kapur, D., Saxena, T.: Sparsity considerations in Dixon resultants. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, pp. 184–191. ACM, New York (1996)
Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using the Dixon resultants. In: ACM ISSAC 1994, Oxford, England, pp. 99–107 (July 1994)
Lewis, R.: Comparing acceleration techniques for the Dixon and Macaulay resultants. Mathematics and Computers in Simulation (2008) (accepted)
Macaulay, F.S.: The algebraic theory of modular systems. Cambridge Mathematical Library (1916)
Mani, V., Hartwig, R.E.: Generalized polynomial bases and the Bezoutian. Linear Algebra Appl. 251, 293–320 (1997)
Manocha, D., Krishnan, S.: Algebraic pruning: A fast technique for curve and surface intersection. Computer-Aided Geometric Design 20, 1–23 (1997)
Maroulas, J., Barnett, S.: Greatest common divisor of generalized polynomial and polynomial matrices. Linear Algebra Appl. 22, 195–210 (1978)
Minimair, M.: MR, macaulay resultant package for Maple (April 2003), http://minimair.org/MR.mpl
Minimair, M.: Basis-independent polynomial division algorithm applied to division in lagrange and bernstein basis (CD-ROM). In: Kapur, D. (ed.) Proceedings of Asian Symposium on Computer Mathematics (ASCM). National University of Singapore (2007)
Minimair, M.: DR, Maple package for computing Dixon projection operators (resultants) (2007), http://minimair.org/dr
Tsai, Y.-F., Farouki, R.T.: Algorithm 812: BPOLY: An object-oriented library of numerical algorithms for polynomials in Bernstein form. ACM Transactions on Mathematical Software 27(2), 267–296 (2001)
Winkler, J.R.: A resultant matrix for scaled Bernstein polynomials. Linear Algebra Appl. 319(1-3), 179–191 (2000)
Winkler, J.R.: Computational experiments with resultants for scaled Bernstein polynomials. In: Mathematical Methods for Curves and Surfaces, Oslo, pp. 535–544. Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN (2001)
Winkler, J.R.: Properties of the companion matrix resultant for Bernstein polynomials. In: Uncertainty in Geometric Computations. Kluwer Internat. Ser. Engrg. Comput. Sci., vol. 704, pp. 185–198. Kluwer Acad. Publ., Boston (2002)
Winkler, J.R.: A companion matrix resultant for Bernstein polynomials. Linear Algebra Appl. 362, 153–175 (2003)
Winkler, J.R.: Numerical and algebraic properties of Bernstein basis resultant matrices. In: Computational Methods for Algebraic Spline Surfaces, pp. 107–118. Springer, Berlin (2005)
Winkler, J.R., Goldman, R.N.: The Sylvester resultant matrix for Bernstein polynomials. In: Curve and Surface Design, Saint-Malo. Mod. Methods Math., pp. 407–416. Nashboro Press, Brentwood (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kapur, D., Minimair, M. (2011). Multivariate Resultants in Bernstein Basis. In: Sturm, T., Zengler, C. (eds) Automated Deduction in Geometry. ADG 2008. Lecture Notes in Computer Science(), vol 6301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21046-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-21046-4_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21045-7
Online ISBN: 978-3-642-21046-4
eBook Packages: Computer ScienceComputer Science (R0)