Abstract
We investigate how projective plane geometry can be formalized in a proof assistant such as Coq. Such a formalization increases the reliability of textbook proofs whose details and particular cases are often overlooked and left to the reader as exercises. Projective plane geometry is described through two different axiom systems which are formally proved equivalent. Usual properties such as decidability of equality of points (and lines) are then proved in a constructive way. The duality principle as well as formal models of projective plane geometry are then studied and implemented in Coq. Finally, we formally prove in Coq that Desargues’ property is independent of the axioms of projective plane geometry.
This work is partially supported by the ANR project Galapagos.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2004)
Bezem, M., Hendriks, D.: On the Mechanization of the Proof of Hessenberg’s Theorem in Coherent Logic. Journal of Automated Reasoning 40(1), 61–85 (2008)
Buekenhout, F. (ed.): Handbook of Incidence Geometry. North-Holland, Amsterdam (1995)
Cerroni, C.: Non-Desarguian Geometries and the Foundations of Geometry from David Hilbert to Ruth Moufang. Historia Mathematica 31(3), 320–336 (2004)
Chicli, L., Pottier, L., Simpson, D.: Mathematical quotients and quotient types in coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 95–107. Springer, Heidelberg (2003)
Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Machine Proofs in Geometry. Series on Applied Mathematics. World Scientific, Singapore (1994)
Chrząszcz, J.: Implementing Modules in the Coq System. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 270–286. Springer, Heidelberg (2003)
Coq development team, The: The Coq Proof Assistant Reference Manual, Version 8.0. LogiCal Project (2004)
Coxeter, H.S.M.: Projective Geometry. Springer, Heidelberg (1987)
Créci, J., Pottier, L.: Gb: une procédure de décision pour Coq. In: Actes JFLA 2004 (2004) (in french)
Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-Order Intuitionistic Formalization and Proofs in Hilbert’s Elementary Geometry. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp. 306–324. Springer, Heidelberg (2001)
Duprat, J.: Une axiomatique de la géométrie plane en Coq. In: Actes des JFLA 2008, pp. 123–136. INRIA (2008) (in french)
Guilhot, F.: Formalisation en Coq et visualisation d’un cours de géométrie pour le lycée. Revue des Sciences et Technologies de l’Information, Technique et Science Informatiques, Langages applicatifs 24, 1113–1138 (2005) (in french)
Heyting, A.: Axioms for intuitionistic plane affine geometry. In: Suppes, P., Henkin, A.T.L. (eds.) The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 160–173. North-Holland, Amsterdam (1959)
Hoffmann, C.M., Joan-Arinyo, R.: Parametric Modeling. In: Handbook of Computer Aided Geometric Design, pp. 519–541. Elsevier, Amsterdam (2002)
Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of Geometric Constraint Systems: a Survey. International Journal of Computational Geometry and Application 16(5-6), 379–414 (2006)
Li, H., Wu, Y.: Automated Short Proof Generation for Projective Geometric Theorems with Cayley and Bracket Algebras: I. incidence geometry. J. Symb. Comput. 36(5), 717–762 (2003)
Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq using ranks. In: Proceedings of the ACM Symposium on Applied Computing, SAC 2009. ACM Press, New York (2009)
Meikle, L.I., Fleuriot, J.D.: Formalizing hilbert’s grundlagen in isabelle/Isar. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer, Heidelberg (2003)
Meikle, L.I., Fleuriot, J.D.: Mechanical Theorem Proving in Computational Geometry. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 1–18. Springer, Heidelberg (2006)
Michelucci, D., Foufou, S., Lamarque, L., Schreck, P.: Geometric constraints solving: some tracks. In: SPM 2006: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, pp. 185–196. ACM Press, New York (2006)
Miquel, A., Werner, B.: The Not So Simple Proof-Irrelevant Model of CC. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 240–258. Springer, Heidelberg (2003)
Moulton, F.R.: A Simple Non-Desarguesian Plane Geometry. Transactions of the American Mathematical Society 3(2), 192–195 (1902)
Narboux, J.: A Decision Procedure for Geometry in Coq. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 225–240. Springer, Heidelberg (2004)
Narboux, J.: Mechanical Theorem Proving in Tarski’s Geometry. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 139–156. Springer, Heidelberg (2007)
Paulson, L.C.: The Isabelle reference manual (2006)
Pichardie, D., Bertot, Y.: Formalizing Convex Hull Algorithms. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 346–361. Springer, Heidelberg (2001)
von Plato, J.: The Axioms of Constructive Geometry. In: Annals of Pure and Applied Logic, vol. 76, pp. 169–200 (1995)
Richter-Gebert, J.: Mechanical Theorem Proving in Projective Geometry. Ann. Math. Artif. Intell. 13(1-2), 139–172 (1995)
Schreck, P.: Robustness in CAD Geometric Construction. In: 5th International Conference on Information Visualisation IV 2001, London, pp. 111–116 (July 2001)
Schwabhauser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer, Heidelberg (1983) (in german)
Sozeau, M., Oury, N.: First-Class Type Classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)
Tarski, A.: What is Elementary Geometry? In: Henkin, L., Suppes, P., Tarski, A. (eds.) The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 16–29. North-Holland, Amsterdam (1959)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Magaud, N., Narboux, J., Schreck, P. (2011). Formalizing Projective Plane Geometry in Coq. In: Sturm, T., Zengler, C. (eds) Automated Deduction in Geometry. ADG 2008. Lecture Notes in Computer Science(), vol 6301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21046-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-21046-4_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21045-7
Online ISBN: 978-3-642-21046-4
eBook Packages: Computer ScienceComputer Science (R0)