Abstract
In this paper we present a language and first-order calculus for formal reasoning about relations based on the theory of allegories. Since allegories are categories, the language is typed in Church-style. We show soundness and completeness of the calculus and demonstrate its usability by presenting the RelAPS system; a proof assistant for relational categories based on the calculus presented here.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aameri, B.: Extending RelAPS to First-Order Logic. MSc. Thesis, Brock University (2010)
Asperti, A., Longo, G.: Categories, Types, and Structures. Foundation of Computing Series. MIT Press, Cambridge (1991)
Berghammer, R., Hattensperger, C., Schmidt, G.: RALF:A Relation Algebraic Formula manipulation system and proof checker. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.) Proc. 3rd Conference on Algebraic Methodology and Software Technology, Workshops in Computing, pp. 407–408. Springer, Heidelberg (1994)
Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Englewood Cliffs (1997)
Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland, Amsterdam (1990)
Gentzen, G.: Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39(2), 176–210 (1934)
Glanfield J.: RelAPS: A Proof System for Relational Categories. Presented at RelMICS/AKA: Relations and Kleene Algebra in Computer Science. Manchester, UK. August (2006).
Glanfield, J.: Towards Automated Derivation in the Theory of Allegories. MSc. Thesis, Brock University (2008)
Gutiérrez, C.: The Arithmetic and Geometry of Allegories - normal forms and complexity of a fragment of the theory of relations. PhD thesis, Wesleyan University (1999)
Johnstone, P.T.: Sketches of an Elephant, A Topos Theory Compendium, vol. 1, p. 42. Oxford Logic Guides (2002)
Kahl, W.: Refactoring Heterogeneous Relation Algebras around Ordered Categories and Converse. J. Rel. Meth. Comp. Sci. (JoRMiCS) 1, 277–313 (2004)
Kozen, D., Kreitz, C., Richter, E.: Automating Proofs in Category Theory. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 392–407. Springer, Heidelberg (2006)
McCune, W.: Prover9: Automated Theorem Prover for First Order and Equational Logic, http://www.cs.unm.edu/~mccune/prover9
Oheim, D.V., Gritzner, T.F.: RALL: Machine Supported Proofs for Relation Algebra. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 380–394. Springer, Heidelberg (1997)
Olivier, J.P., Sarrato, D.: Catégories de Dedekind. Morphismes Dans Les Categories de Schröder. C. R. Acad. Sci. Paris 290, 939–941 (1980)
Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer, Heidelberg (1989); English version: Relations and Graphs. Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoret. Comput. Sci. Springer, Heidelberg (1989)
Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous Relation Algebras. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science, Advances in Computing Science, pp. 39–53. Springer, Vienna (1997)
Schmidt, G.: Relational Mathematics. Cambridge University Press (2010), Cambridge (2010)
Winter, M.: A new algebraic approach to L-fuzzy relations convenient to study crispness. Information Science 139, 233–252 (2001)
Winter, M.: Goguen categories. A categorical approach to L-fuzzy relations. Trend in Logic 25 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aameri, B., Winter, M. (2011). A First-Order Calculus for Allegories. In: de Swart, H. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2011. Lecture Notes in Computer Science, vol 6663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21070-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-21070-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21069-3
Online ISBN: 978-3-642-21070-9
eBook Packages: Computer ScienceComputer Science (R0)