Skip to main content

Rate-Dependent Hysteresis Modeling and Compensation Using Least Squares Support Vector Machines

  • Conference paper
Advances in Neural Networks – ISNN 2011 (ISNN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6676))

Included in the following conference series:

Abstract

This paper is concentrated on the rate-dependent hysteresis modeling and compensation for a piezoelectric actuator. A least squares support vector machines (LS-SVM) model is proposed and trained by introducing the current input value and input variation rate as the input data set to formulate a one-to-one mapping. After demonstrating the effectiveness of the presented model, a LS-SVM inverse model based feedforward control combined with a PID feedback control is designed to compensate the hysteresis nonlinearity. Simulation results show that the hybrid scheme is superior to either of the stand-alone controllers, and the rate-dependent hysteresis is suppressed to a negligible level, which validate the effectiveness of the constructed controller. Owing to the simple procedure, the proposed modeling and control approaches are expected to be extended to other types of hysteretic systems as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tan, X., Baras, J.S.: Adaptive identification and control of hysteresis in smart materials. IEEE Trans. Automat. Contr. 50(6), 827–839 (2005)

    Article  MathSciNet  Google Scholar 

  2. Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. European J. Control 9(4), 407–421 (2003)

    Article  MATH  Google Scholar 

  3. Xie, W.F., Fu, J., Su, C.Y.: Observer based control of piezoelectric actuators with classical Duhem modeled hysteresis. In: Proc. of American Control Conf., pp. 4221–4226 (2009)

    Google Scholar 

  4. Xu, Q., Li, Y.: Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation. J. Dyn. Syst. Meas. Control-Trans. ASME 132(4), 041011 (2010)

    Article  Google Scholar 

  5. Yu, Y., Xiao, Z., Naganathan, N.G., Dukkipati, R.V.: Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system. Mech. Mach. Theory 37(1), 75–89 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ang, W.T., Khosla, P.K., Riviere, C.N.: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)

    Article  Google Scholar 

  7. Yu, S., Alici, G., Shirinzadeh, B., Smith, J.: Sliding mode control of a piezoelectric actuator with neural network compensating rate-dependent hysteresis. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3641–3645 (2005)

    Google Scholar 

  8. Dong, R., Tan, Y., Chen, H., Xie, Y.: A neural networks based model for rate-dependent hysteresis for piezoelectric actuators. Sens. Actuator A-Phys. 143(2), 370–376 (2008)

    Article  Google Scholar 

  9. Wong, P.K., Vong, C.M., Tam, L.M., Li, K.: Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least-square support vector machines. Int. J. Vehicle Systems Modelling and Testing 3(4), 312–330 (2008)

    Article  Google Scholar 

  10. Suykens, J.A.K.: Support vector machines: a nonlinear modeling and control perspective. European J. Control 7(2-3), 311–327 (2001)

    Article  MATH  Google Scholar 

  11. Ji, H.W., Yang, S.X., Wu, Z.T., Yan, G.B.: Precision control of piezoelectric actuator using support vector regression nonlinear model and neural networks. In: Proc. of Int. Conf. on Machine Learning and Cybernetics, pp. 1186–1191 (2005)

    Google Scholar 

  12. Wang, B., Zhong, W., Pi, D., Sun, Y., Xu, C., Chu, S.: Support vector machine based modeling of nonlinear systems with hysteresis. In: Proc. of 6th World Congress on Intelligent Control and Automation, pp. 1722–1725 (2006)

    Google Scholar 

  13. Yang, X.F., Li, W., Wang, Y.Q., Su, X.P.: A multi-loop hysteresis model of piezo actuator based on LS-SVM. In: Proc. of 7th Int. Conf. on Asia Simulation Conf., pp. 1451–1454 (2008)

    Google Scholar 

  14. Wang, X., Ye, M.: Hysteresis and nonlinearity compensation of relative humidity sensor using support vector machines. Sens. Actuator A-Phys. 129(1), 274–284 (2008)

    Article  Google Scholar 

  15. Lei, W., Mao, J., Ma, Y.: A new modeling method for nonlinear rate-dependent hysteresis system based on LS-SVM. In: Proc. of 10th Int. Conf. on Control, Automation, Robotics and Vision, pp. 1442–1446 (2008)

    Google Scholar 

  16. Li, Y., Xu, Q.: Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. IEEE Trans. Contr. Syst. Technol. 18(4), 798–810 (2010)

    Article  Google Scholar 

  17. Xu, Q., Li, Y.: Fuzzy sliding mode control with perturbation estimation for a piezoactuated micromanipulator. In: Zeng, Z., Wang, J. (eds.) Advances in Neural Network Research and Applications. Lecture Notes in Electrical Engineering, vol. 67, pp. 153–160. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C., De Brabanter, J., Pelckmans, K., De Moor, B., Vandewalle, J., Suykens, J.A.K.: LS-SVMlab toolbox user’s guide version 1.7. Internal Report 10-146, ESAT-SISTA, K.U. Leuven, Leuven, Belgium (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, Q., Wong, PK., Li, Y. (2011). Rate-Dependent Hysteresis Modeling and Compensation Using Least Squares Support Vector Machines. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds) Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21090-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21090-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21089-1

  • Online ISBN: 978-3-642-21090-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics