Skip to main content

Where-What Network with CUDA: General Object Recognition and Location in Complex Backgrounds

  • Conference paper
Advances in Neural Networks – ISNN 2011 (ISNN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6676))

Included in the following conference series:

Abstract

An effective framework for general object recognition and localization from complex backgrounds had not been found till the brain-inspired Where-What Network (WWN) series by Weng and coworkers. This paper reports two advances along this line. One is the automatic adaptation of the receptive field of each neuron to disregard input dimensions that arise from backgrounds but without a handcrafted object model, since the initial hexagonal receptive field does not fit well the contour of the automatically assigned object view. The other is the hierarchical parallelization technique and its implementation on the GPU-based accelerator using the CUDA parallel language. The experimental results showed that automatic adaptation of the receptive fields led to improvements in the recognition rate. The hierarchical parallelization technique has achieved a speedup of 16 times compared to the C program. This speed-up was employed on the Haibao Robot displayed at the World Expo, Shanghai 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ji, Z., Weng, J.: WWN-2: A biologically inspired neural network for concurrent visual attention and recognition. In: Proc. IEEE International Joint Conference on Neural Networks, Barcelona, Spain, July 18-23, pp. 1–8 (2010)

    Google Scholar 

  2. Ji, Z., Weng, J., Prokhorov, D.: Where-what network 1: “Where” and “What” assist each other through top-down connections. In: Proc. IEEE International Conference on Development and Learning, Monterey, CA, August 9-12, pp. 61–66 (2008)

    Google Scholar 

  3. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. International Conference on Computer Vision, Kerkyra, September 20-27, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  4. Luciw, M., Weng, J.: Where-what network 3: Developmental top-down attention for multiple foregrounds and complex backgrounds. In: Proc. IEEE International Joint Conference on Neural Networks, Barcelona, Spain, July 18-23, pp. 1–8 (2010)

    Google Scholar 

  5. Luciw, M., Weng, J.: Where-what network-4: The effect of multiple internal areas. In: Proc. IEEE International Joint Conference on Neural Networks, Ann Arbor, MI, August 18-21, pp. 311–316 (2010)

    Google Scholar 

  6. Luciw, M., Weng, J.: Topographic class grouping with applications to 3d object recognition. In: Proc. IEEE International Joint Conference on Neural Networks, Hong Kong, June 1-6, pp. 3987–3994 (2008)

    Google Scholar 

  7. Riesenhuber, M., Poggio, T.: Hierachical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  8. Roelfsema, P.R.: Cortical algorigthms for perceptual grouping. Annual Review of Neuroscience 29, 203–227 (2006)

    Article  Google Scholar 

  9. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Analysis and Machine Intelligence 29(3), 411–426 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Wu, X., Song, X., Zhang, W., Weng, J. (2011). Where-What Network with CUDA: General Object Recognition and Location in Complex Backgrounds. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds) Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21090-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21090-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21089-1

  • Online ISBN: 978-3-642-21090-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics