Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6681))

Abstract

A star forest is a collection of vertex-disjoint trees of depth at most 1, and its size is the number of leaves in all its components. A spanning star forest of a given graph G is a spanning subgraph of G that is also a star forest. The spanning star forest problem (SSF for short) [14] is to find the maximum-size spanning star forest of a given graph. In this paper, we study several variants of SSF, obtaining first or improved approximation and hardness results in all settings as shown below.

  1. 1

    We study SSF on graphs of minimum degree δ(n), n being the number of vertices in the input graph. Call this problem ( ≥ δ(n))-SSF. We give an (almost) complete characterization of the complexity of ( ≥ δ(n))-SSF with respect to δ(n) as follows.

    • When 1 ≤ δ(n) ≤ O(1), ( ≥ δ(n))-SSF is APX-complete.

    • When ω(1) ≤ δ(n) ≤ O(n 1 − ε) for some constant ε > 0, ( ≥ δ(n))-SSF is NP-hard but admits a PTAS.

    • When δ(n) ≥ ω(n 1 − ε) for every constant ε > 0, ( ≥ δ(n))-SSF is not NP-hard assuming Exponential Time Hypothesis (ETH).

  2. 2

    We investigate the spanning k-tree forest problem, which is a natural generalization of SSF. We obtain the first inapproximability bound of \(1-\Omega(\frac{1}{k})\) for this problem, which asymptotically matches the known approximation ratio of \(1-\frac{1}{k+1}\) given in [13]. We then propose an approximation algorithm for it with a slightly improved approximation ratio of \(1-\frac{1}{k+2}\).

  3. 3

    We prove that SSF cannot be approximated to any factor larger than \(\frac{244}{245}\) in polynomial time, unless P = NP. This improves the previously best known bound of \(\frac{259}{260}\) [14].

This work was supported in part by the National Basic Research Program of China Grant 2007CB807900, 2007CB807901, the National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174. Part of this work was done while the authors were visiting Cornell University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agra, A., Cardoso, D., Cerfeira, O., Rocha, E.: A spanning star forest model for the diversity problem in automobile industry. In: Proceedings of the 17th European Conference on Combinatorial Optimization, ECCO XVII (2005)

    Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (1992)

    MATH  Google Scholar 

  3. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. J. Comput. Syst. Sci. 58(1), 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Kyropoulou, M.: An improved approximation bound for spanning star forest and color saving. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 90–101. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Berry, V., Guillemot, S., Nicolas, F., Paul, C.: On the approximation of computing evolutionary trees. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 115–125. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP. In: Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 687–696 (2008)

    Google Scholar 

  7. Chen, N., Engelberg, R., Nguyen, C.T., Raghavendra, P., Rudra, A., Singh, G.: Improved approximation algorithms for the spanning star forest problem. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 44–58. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimizatin problems. Theor. Comput. Sci. 354, 320–338 (2006)

    Article  MATH  Google Scholar 

  9. Duh, R., Furer, M.: Approximation of k-set cover by semi local optimization. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing (STOC), pp. 256–264 (1997)

    Google Scholar 

  10. Feige, U.: A threshold of ln n for aproximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  Google Scholar 

  11. He, J., Liang, H.: An improved approximation algorithm for spanning star forest in dense graphs. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 160–169. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liao, C.-S., Zhang, L.: Approximating the spanning k-tree forest problem. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 293–301. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating the spanning star forest problem and its applications to genomic sequence alignment. SIAM J. Comput. 38(3), 946–962 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, J., Liang, H. (2011). On Variants of the Spanning Star Forest Problem. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21204-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21203-1

  • Online ISBN: 978-3-642-21204-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics