Abstract
In this paper, we present an improved algorithm to decide whether a graph of maximum degree 3 has an edge dominating set of size at most k or not, which is based on enumeration of vertex covers. We first enumerate vertex covers of size at most 2k and then construct an edge dominating set based on each vertex cover to find a satisfied edge dominating set. To enumerate vertex covers, we use a branch-and-reduce method that will generate a search tree of size O(2.1479k). Then we get the running time bound of the algorithm.
The work is supported in part by National Natural Science Foundation of China Grant No. 60903007.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Maximum independent set in graphs of average degree at most three in \({\mathcal O}(1.08537^n)\). In: KratochvÃl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 373–384. Springer, Heidelberg (2010)
Fernau, H.: edge dominating set: Efficient enumeration-based exact algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153. Springer, Heidelberg (2006)
Fomin, F., Gaspers, S., Saurabh, S., Stepanov, A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009)
Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. Freeman, San Francisco (1979)
Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph TSP. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 108–117. Springer, Heidelberg (2007)
Johnson, D., Yannakakis, M., Papadimitriou, C.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)
Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal independent sets and other techniques. Theory of Computing Systems 42(3), 563–587 (2007)
Randerath, B., Schiermeyer, I.: Exact algorithms for minimum dominating set. Technical Report zaik 2005-501, Universität zu Köln, Cologne, Germany (2005)
van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 214–225. Springer, Heidelberg (2008)
Wang, J., Chen, B., Feng, Q., Chen, J.: An efficient fixed-parameter enumeration algorithm for weighted edge dominating set. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 237–250. Springer, Heidelberg (2009)
Xiao, M.: A note on vertex cover in graphs with maximum degree 3. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 150–159. Springer, Heidelberg (2010)
Xiao, M.: Exact and parameterized algorithms for edge dominating set in 3-degree graphs. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 387–400. Springer, Heidelberg (2010)
Xiao, M.: A simple and fast algorithm for maximum independent set in 3-degree graphs. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 281–292. Springer, Heidelberg (2010)
Xiao, M., Nagamochi, H.: Parameterized edge dominating set in cubic graphs. Technical Report 2011-005, Kyoto Univ. (2011), http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/TR2011-005.pdf
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xiao, M., Nagamochi, H. (2011). Parameterized Edge Dominating Set in Cubic Graphs. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-21204-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21203-1
Online ISBN: 978-3-642-21204-8
eBook Packages: Computer ScienceComputer Science (R0)