Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6681))

  • 715 Accesses

Abstract

An acyclic edge-colouring of a graph is a proper edge-colouring such that the subgraph induced by the edges of any two colours is acyclic. The acyclic chromatic index of a graph G is the smallest possible number of colours in an acyclic edge-colouring of G. In [12], we have shown that the acyclic chromatic index of a connected subcubic graph G is at most 4 with the exception of K 4 and K 3,3, for which five colors are optimal. Here we give a quadratic-time algorithm that finds an acyclic 4-edge-colouring of a given connected subcubic graph different from K 4 and K 3,3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Sudakov, B., Zaks, A.: Acyclic edge-colorings of graphs. J. Graph Theory 37, 157–167 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., McDiarmid, C.J.H., Reed, B.A.: Acyclic coloring of graphs. Random Struct. Algorithms 2, 277–288 (1991)

    Google Scholar 

  3. Alon, N., Zaks, A.: Algorithmic aspects of acyclic edge colorings. Algorithmica 32, 611–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of subcubic graphs. Discrete Math. (in press)

    Google Scholar 

  5. Burstein, M.I.: Every 4-valent graph has an acyclic 5-coloring (in Russian). Soobšč. Akad. Nauk Gruzin. SSR 93, 21–24 (1979) (Georgian and English summaries)

    MATH  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn., pp. 558–559. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Fiamčík, J.: Acyclic chromatic index of a graph with maximum valency three. Arch. Math. (Brno) 16, 81–88 (1980)

    Google Scholar 

  8. Fiamčík, J.: Acyclic chromatic index of subdivided graph. Arch. Math. (Brno) 20, 69–82 (1984)

    Google Scholar 

  9. Fiamčík, J.: The acyclic chromatic class of a graph (in russian). Math. Slovaca 28, 139–145 (1978)

    MathSciNet  MATH  Google Scholar 

  10. Gebremedhin, A.H., Tarafdar, A., Manne, F., Pothen, A.: New acyclic and star coloring algorithms with application to computing Hessians. SIAM J. Sci. Comput. 29(3), 1042–1072 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grünbaum, B.: Acyclic colorings of planar graphs. Israel Journal of Mathematics, 390–408 (1973)

    Google Scholar 

  12. Máčajová, E., Mazák, J.: Optimal acyclic edge-colouring of cubic graphs, technical report (2008), http://kedrigern.dcs.fmph.uniba.sk/reports/download.php?id=18

  13. Molloy, M., Reed, B.: Further algorithmic aspects of the local lemma. In: Proceedings of the 30th Annual ACM Symposium on the Theory of Computing, May 1998, pp. 524–529 (May 1998)

    Google Scholar 

  14. Nešetřil, J., Wormald, N.C.: The acyclic edge chromatic number of a random d-regular graph is d + 1. J. Graph Theory 49, 69–74 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Skulrattanakulchai, S.: Acyclic colouring of subcubic graphs. Information Processing Letters 92, 161–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Máčajová, E., Mazák, J. (2011). An Algorithm for Optimal Acyclic Edge-Colouring of Cubic Graphs. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21204-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21203-1

  • Online ISBN: 978-3-642-21204-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics