Abstract
In this paper, we study 1-space bounded multi-dimensional bin packing. A sequence of items arrive over time, each item is a d-dimensional hyperbox and the length of each side is no more than 1. These items must be packed without overlapping into d-dimensional hypercubes with unit length on each side. In d-dimensional space, any two dimensions i and j define a space P ij . When an item arrives, we must pack it into an active bin immediately without any knowledge of the future items, and 90°-rotation on any plane P ij is allowed.
The objective is to minimize the total number of bins used for packing all these items in the sequence. In the 1-space bounded variant, there is only one active bin for packing the current item. If the active bin does not have enough space to pack the item, it must be closed and a new active bin is opened. For this problem, we give an online algorithm with competitive ratio 4d, which is the first study on 1-space bounded d-dimensional bin packing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin Packing in Multiple Dimensions: In-approximability Results and Approximation Schemes. Mathematics of Operations Research 31(1), 31–49 (2006)
Bansal, N., Caprara, A., Sviridenko, M.: Improved approximation algorithm for multidimensional bin packing problems. In: FOCS 2006, pp. 697–708 (2006)
Blitz, D., van Vliet, A., Woeginger, G.J.: Lower bounds on the asymptotic worst-case ratio of on-line bin packing algorithms (1996) (unpublished manuscript)
Caprara, A.: Packing 2-dimensional bins in harmony. In: FOCS 2002, pp. 490–499 (2002)
Chung, F.R.K., Garey, M.R., Johnson, D.S.: On packing two-dimensional bins. SIAM J. Algebraic Discrete Methods 3(1), 66–76 (1982)
Coppersmith, D., Raghavan, P.: Multidimensional on-line bin packing: Algorithms and worst case analysis. Oper. Res. Lett. 8, 17–20 (1989)
Csirik, J., Frenk, J., Labbe, M.: Two-dimensional rectangle packing: on-line methods and results. Discrete Applied Mathematics 45(3), 197–204 (1993)
Csirik, J., Johnson, D.S.: Bounded Space On-Line Bin Packing: Best is Better than First. Algorithmica 31, 115–138 (2001)
Chin, F.Y.L., Ting, H.-F., Zhang, Y.: 1-Space Bounded Algorithms for 2-Dimensional Bin Packing. To appear in International Journal of Foundation of Computer Science
Zhang, Y., Chen, J., Chin, F.Y.L., Han, X., Ting, H.-F., Tsin, Y.H.: Improved Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 242–253. Springer, Heidelberg (2010)
Epstein, L., van Stee, R.: Optimal Online Algorithms for Multidimensional Packing Problems. SIAM Jouranl on Computing 35(2), 431–448 (2005)
Fujita, S.: On-Line Grid-Packing with a Single Active Grid. Information Processing Letters 85, 199–204 (2003)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide for the Theory of NP-Completeness. Freeman, San Francisco (1979)
Han, X., Fujita, S., Guo, H.: Dimensional Harmonic Algorithm with Performance Ratio 2.7834. IPSJ SIG. Notes (93), 43–50 (2001)
Han, X., Chin, F., Ting, H.-F., Zhang, G., Zhang, Y.: A New Upper Bound on 2D Online Bin Packing (manuscript)
Johnson, D.S., Garey, M.R.: A 71/60 theorem for bin-packing. J. Complexity 1, 65–106 (1985)
Johnson, D.S., Demers, A.J., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-Case performance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3(4), 299–325 (1974)
Lee, C.C., Lee, D.T.: A simple on-line bin packing algorithm. J. Assoc. Comput. Mach. 32, 562–572 (1985)
Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin packing problem. In: Proc. 23rd Ann. IEEE Symp. on Foundations of Comput. Sci., pp. 312–320. IEEE Computer Society, Los Alamitos (1982)
Ramanan, P.V., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear time. Journal of Algorithms 10, 305–326 (1989)
Seiden, S.S.: On the online bin packing problem. J. ACM 49, 640–671 (2002)
Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res. Logistics 41, 579–585 (1994)
Seiden, S., van Stee, R.: New bounds for multi-dimensional packing. Algorithmica 36, 261–293 (2003)
van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Information Processing Letters 43, 277–284 (1992)
Yao, A.C.-C.: New Algorithms for Bin Packing. Journal of the ACM 27, 207–227 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Chin, F.Y.L., Ting, HF., Han, X., Chang, Z. (2011). Online Algorithm for 1-Space Bounded Multi-dimensional Bin Packing. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-21204-8_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21203-1
Online ISBN: 978-3-642-21204-8
eBook Packages: Computer ScienceComputer Science (R0)