Abstract
In this paper, we identify a minimum width rectangular annulus that encloses a given set of n points in a plane. We propose an O(n 2 logn) time and O(n) space algorithm for this problem. To the best of our knowledge this is the first sub-cubic algorithm for rectangular annulus for arbitrary orientation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sharir, M., Agarwal, P.: Davenport-Schinzel Sequences and their Geometric Applications. Cambridge University Press, Cambridge (2010)
Agarwal, P., Sharir, M.: Efficient Algorithms for Geometric Optimization. ACM Computing Survey 30, 412–458 (1998)
Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric optimization problems. Discrete Computational Geometry 16, 317–337 (1996)
Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. Journal of Algorithms 17, 292–318 (1994)
Abellanas, M., Hurtado, F., Icking, C., Ma, L., Palop, B., Ramos, P.A.: Best Fitting Rectangles. In: Proc. European Workshop on Computational Geometry (2003)
Barequet, G., Briggs, A.J., Dickerson, M.T., Goodrich, M.T.: Offset-polygon annulus placement problems. Computational Geometry: Theory and Applications 11, 125–141 (1998)
de Berg, M., Bose, P., Bremner, D., Ramaswami, S., Wilfong, G.: Computing constrained minimum-width annuli of point sets. Computer Aided Design 30, 267–275 (1998)
Barequet, G., Dickerson, M.T., Goodrich, M.T.: Voronoi diagrams for convex polygon-offset distance functions. Discrete Computational Geometry 25, 271–291 (2001)
DÃaz-Báñez, J.M., Hurtado, F., Meijer, H., Rappaport, D., Sellarés, J.A.: The Largest Empty Annulus Problem. International Journal of Computational Geometry and Applications 13, 317–325 (2003)
Duncan, C.A., Goodrich, M.T., Ramos, E.A.: Efficient approximation and optimization algorithms for computational metrology. In: Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pp. 121–130 (1997)
Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using the Voronoi diagrams. In: Abstract: 1st Canadian Conference in Computational Geometry, vol. 41 (1989)
Foster, L.W.: GEO-METRICS II: The application of geometric tolerancing techniques. Addison-Wesley, Reading (1982)
Gluchshenko, O., Hamacher, H.W., Tamir, A.: An optimal O(nlogn) algorithm for finding an enclosing planar rectilinear annulus of minimum width. Operation Research Letters 37, 168–170 (2009)
O’Rourke, J., Aggarwal, A., Maddila, S., Baldwin, M.: An optimal algorithm for finding minimal enclosing triangles. Journal of Algorithms 7, 258–269 (1986)
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Berlin (1988)
Roy, U., Zhang, X.: Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error. Computer Aided Design 24, 161–168 (1992)
Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proc. IEEE MELECON (1983)
Wainstein, A.D.: A non-monotonous placement problem in the plane. In Software Systems for Solving Optimal Planning Problems. In: Abstract: 9th All-Union Symp. USSR, Symp., pp. 70–71 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mukherjee, J., Mahapatra, P.R.S., Karmakar, A., Das, S. (2011). Minimum Width Rectangular Annulus. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-21204-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21203-1
Online ISBN: 978-3-642-21204-8
eBook Packages: Computer ScienceComputer Science (R0)