Abstract
Given two genomic maps G 1 and G 2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G 1 and G 2 such that the resultant subsequences, denoted as G 1 * and G 2 *, can be partitioned into the same set of maximal strips, which are common substrings of length greater than or equal to two. The complementary maximal strip recovery (CMSR) problem has the complementary goal to delete the minimum number of markers. Both MSR and CMSR have been shown NP-hard and APX-complete, and they admit a 4-approximation and a 3-approximation respectively. In this paper, we present an improved \(\frac 73\)-approximation algorithm for the CMSR problem, with its worst-case performance analysis done through a sequential amortization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bar-Yehuda, R., Halldórsson, M.M., Naor, J.S., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM Journal on Computing 36, 1–15 (2006)
Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps: hardness and approximation algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 710–719. Springer, Heidelberg (2009)
Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering synthetic blocks from comparative maps. Journal of Combinatorial Optimization 18, 307–318 (2009)
Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)
Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms for the complementary maximal strip recovery problem. Journal of Combinatorial Optimization (2010) (accepted for publication on November 3, 2010)
Jiang, M.: Inapproximability of maximal strip recovery. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 616–625. Springer, Heidelberg (2009)
Jiang, M.: Inapproximability of maximal strip recovery: II. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 53–64. Springer, Heidelberg (2010)
Li, Z., Goebel, R., Wang, L., Lin, G.: An improved approximation algorithm for the complementary maximal strip recovery problem. Technical Report TR11-02, Department of Computing Science, University of Alberta (January 2011)
Wang, L., Zhu, B.: On the tractability of maximal strip recovery. Journal of Computational Biology 17, 907–914 (2010); Correction 18, 129 (2011)
Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4, 515–522 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, Z., Goebel, R., Wang, L., Lin, G. (2011). An Improved Approximation Algorithm for the Complementary Maximal Strip Recovery Problem. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-21204-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21203-1
Online ISBN: 978-3-642-21204-8
eBook Packages: Computer ScienceComputer Science (R0)